In this blog post, Paul Hiemstra shows how to sum up two columns using dplyr::mutate_. Copy/paste-ing relevant parts:
library(lazyeval)
f = function(col1, col2, new_col_name) {
mutate_call = lazyeval::interp(~ a + b, a = as.name(col1), b = as.name(col2))
mtcars %>% mutate_(.dots = setNames(list(mutate_call), new_col_name))
}
allows one to then do:
head(f('wt', 'mpg', 'hahaaa'))
Great!
I followed up with a question (see comments) as to how one could extend this to a 100 columns, since it wasn't quite clear (to me) how one could do it without having to type all the names using the above method. Paul was kind enough to indulge me and provided this answer (thanks!):
# data
df = data.frame(matrix(1:100, 10, 10))
names(df) = LETTERS[1:10]
# answer
sum_all_rows = function(list_of_cols) {
summarise_calls = sapply(list_of_cols, function(col) {
lazyeval::interp(~col_name, col_name = as.name(col))
})
df %>% select_(.dots = summarise_calls) %>% mutate(ans1 = rowSums(.))
}
sum_all_rows(LETTERS[sample(1:10, 5)])
I'd like to improve this answer on these points:
The other columns are gone. I'd like to keep them.
It uses rowSums() which has to coerce the data.frame to a matrix which I'd like to avoid.
Also I'm not sure if the use of . within non-do() verbs is encouraged? Because . within mutate() doesn't seem to adapt to just those rows when used with group_by().
And most importantly, how can I do the same using mutate_() instead of mutate()?
I found this answer, which addresses point 1, but unfortunately, both dplyr answers use rowSums() along with mutate().
PS: I just read Hadley's comment under that answer. IIUC, 'reshape to long form + group by + sum + reshape to wide form' is the recommend dplyr way for these type of operations?
Here's a different approach:
library(dplyr); library(lazyeval)
f <- function(df, list_of_cols, new_col) {
df %>%
mutate_(.dots = ~Reduce(`+`, .[list_of_cols])) %>%
setNames(c(names(df), new_col))
}
head(f(mtcars, c("mpg", "cyl"), "x"))
# mpg cyl disp hp drat wt qsec vs am gear carb x
#1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 27.0
#2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 27.0
#3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 26.8
#4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 27.4
#5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 26.7
#6 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 24.1
Regarding your points:
Other columns are kept
It doesn't use rowSums
You are specifically asking for a row-wise operation here so I'm not sure (yet) how a group_by could do any harm when using . inside mutate/mutate_
It makes use of mutate_
Related
I've spent hours trying to make glue on the RHS of a formula work and out of clues. Here is a simple reprex.
meta <- function(x, var, suffix){
x<- x %>% mutate("{{var}}_{suffix}":= 5)
x<- x %>% mutate("{{var}}_{suffix}_new":= {{var}} - "{{var}}_{suffix}")
}
x<- meta(mtcars, mpg, suf)
#Should be equivalent to
x<- mtcars %>% mutate(mpg_suf:= 5)
x<- x%>% mutate(mpg_suf_new:= mpg - mpg_suf)
#N: Tried https://stackoverflow.com/questions/70427403/how-to-correctly-glue-together-prefix-suffix-in-a-function-call-rhs but none of the methods in it worked, unfortunately
Meta function gives me "Error in local_error_context(dots = dots, .index = i, mask = mask) :
promise already under evaluation: recursive default argument reference or earlier problems? "
Went over all hits for the searchwords for it on SO but nothing worked at the moment.
Would really appreciate any insights. Thank you!
Here is a working version:
meta <- function(x, var, suffix){
new_name <- rlang::englue("{{ var }}_{{ suffix }}")
x %>%
mutate("{new_name}" := 5) %>%
mutate("{new_name}_new" := {{ var }} - .data[[new_name]])
}
names(meta(mtcars, mpg, suf))
#> [1] "mpg" "cyl" "disp" "hp"
#> [5] "drat" "wt" "qsec" "vs"
#> [9] "am" "gear" "carb" "mpg_suf"
#> [13] "mpg_suf_new"
To understand what is going on:
Learn about the difference between "{{ var }}" and "{var}" in tidyeval glue strings: https://rlang.r-lib.org/reference/glue-operators.html
Learn about englue() to create glue strings outside of the LHS of :=: https://rlang.r-lib.org/reference/englue.html. This part is not necessary but I thought it was nicer to create and reuse a variable.
Tricky part, you create a new column with a constructed name and then want to use the new column that this name refers to. You'll have to subset it with .data, see: https://rlang.r-lib.org/reference/dot-data.html
See also the general topic: https://rlang.r-lib.org/reference/topic-data-mask-programming.html
I think it's best if we define the pieces we need first, then we can use them as needed on the LHS or the RHS of the calculation. I will add that it doesn't make much sense to me to pass the suffix argument as a bare name. I think it would be a clearer choice to make it string only.
library(dplyr)
meta <- function(x, var, suffix) {
var <- rlang::as_name(enquo(var))
suffix <- rlang::as_name(enquo(suffix)) # Remove this to make "suffix" string only.
new_var <- glue::glue("{var}_{suffix}")
x %>%
mutate("{new_var}" := 5,
"{new_var}_new" := !!sym(var) - !!sym(new_var))
}
mtcars %>%
head() %>%
meta(mpg, suf)
mpg cyl disp hp drat wt qsec vs am gear carb mpg_suf mpg_suf_new
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 5 16.0
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 5 16.0
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 5 17.8
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 5 16.4
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 5 13.7
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 5 13.1
I want to know to use a short script to eliminate all but one duplicate column variables based on the prefix of the colname without inputting the variables I want to remove by hand.
For example, I created repeats of the mtcars$am variables, called am1, am2, am3, and am4 in a data frame called mtcars_example_2. I removed the original am variable in the mtcars_example_2 data frame.
I can use the script below to eliminate all variables with the prefix "am" but the am1 variable into a new variable called mtcars_example_3 using the code below, which inputs all variables to remove by hand:
## long way of removing all variable with am prefix that were not am1
mtcars_example_3 <-
mtcars_example_2 %>%
select(
-c(
"am2", "am3", "am4"
)
)
But this seems like the long way of doing this. Is there a faster way that does not require me to individual type in the names of each of the variables that I want to remove from the data.
Is this possible? If so, how can this be done?
Thanks ahead of time.
Here is the code for the example:
# example data
## loads packages
library(tidyverse)
## creates mtcars_example data
mtcars_example_1 <- data.frame(mtcars)
mtcars_example_2 <- data.frame(mtcars_example_1)
## creates duplicate variables, based on am variable
mtcars_example_2$am1 <- mtcars_example_1$am
mtcars_example_2$am2 <- mtcars_example_1$am
mtcars_example_2$am3 <- mtcars_example_1$am
mtcars_example_2$am4 <- mtcars_example_1$am
## removes original variable
mtcars_example_2 <-
mtcars_example_2 %>%
select(
-c(
"am"
)
)
## long way of removing all variable with am prefix that were not am1
mtcars_example_3 <-
mtcars_example_2 %>%
select(
-c(
"am2", "am3", "am4"
)
)
You can remove all the variables that start with am but keep am1 :
library(dplyr)
mtcars_example_2 %>% select(-starts_with('am'), am1) %>% head
# mpg cyl disp hp drat wt qsec vs gear carb am1
#Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 4 4 1
#Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 4 4 1
#Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 4 1 1
#Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 3 1 0
#Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 3 2 0
#Valiant 18.1 6 225 105 2.76 3.460 20.22 1 3 1 0
Depending on your actual scenario you can also use regex to remove columns.
mtcars_example_2 %>% select(-matches('am[2-4]')) %>% head
We could also do
library(dplyr)
mtcars_example_2 %>%
select(-contains('am'), am1)
I'm writing a function that takes a data.table as an argument. The column names of data.table are partially specified as arguments, but not all columns names are specified and all original columns need to be maintained. Inside the function, some columns need to be added to the data.table. Even if the data.table is copied inside the function, I want to add these columns in a way that is guaranteed not to overwrite existing columns. What's the best way to ensure I'm not overwriting columns given that column names are not known?
Here's one approach:
#x is a data.table and knownvar is a column name of that data.table
f <- function(x,knownvar){
x <- copy(x)
tempcol <- "z"
while(tempcol %in% names(x))
tempcol <- paste0("i.",tempcol)
tempcol2 <- "q"
while(tempcol2 %in% names(x))
tempcol2 <- paste0("i.",tempcol2)
x[, (tempcol):=3]
eval(parse(text=paste0("x[,(tempcol2):=",tempcol,"+4]")))
x
}
Note that even though I'm copying x here, I still need this process to be memory efficient. Is there an easier way of doing this? Possibly without using eval(parse(text=?
Obviously I could just create a local variable (e.g. a vector) in the function environment (rather than adding it explicitly as column of the data.table), but this wouldn't work if I then need to sort/join the data.table. Plus I may want to explicitly return a data.table that contains both the original variables and the new column.
Here is one way to write the function using set and non-standard evaluation with substitute() + eval().
Note 1: if new columns are created based on the column names in newcols (instead of the column name in knownvar), the character names in newcols are converted to symbols with as.name() (or equivalently as.symbol()).
Note 2: new columns in newvals can only be added in a sensible order, i.e. if column q requires column z, column z should be added before column q.
library(data.table)
f <- function(x, knownvar) {
## remove if x should be modified in-place
x <- copy(x)
## new column names
newcols <- setdiff(make.unique(c(names(x), c("z", "q"))), names(x))
## new column values based on knownvar or new column names
zcol <- as.name(newcols[1])
newvals <- list(substitute(3 * knownvar), substitute(zcol + 4))
for(i in seq_along(newvals)) {
set(x, j = newcols[i], value = eval(newvals[[i]], envir = x))
}
return(x)
}
## example data
x <- as.data.table(mtcars)
x[, c("q", "q.1") := .(mpg, 2 * mpg)]
head(f(x, mpg))
#> mpg cyl disp hp drat wt qsec vs am gear carb q q.1 z q.2
#> 1: 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 21.0 42.0 63.0 67.0
#> 2: 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 21.0 42.0 63.0 67.0
#> 3: 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 22.8 45.6 68.4 72.4
#> 4: 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 21.4 42.8 64.2 68.2
#> 5: 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 18.7 37.4 56.1 60.1
#> 6: 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 18.1 36.2 54.3 58.3
I'm wondering if there's a way to apply a function in a string variable to .SD cols in a data.table.
I can generalize all other parts of function calls using a data.table, including input and output columns, which I'm very happy about. But the final piece seems to be applying a variable function to a data.table, which is something I believe I've done before with dplyr and do.call.
mtcars <- as.data.table(mtcars)
returnNames <- "calculatedColumn"
SDnames <- c("mpg","hp")
myfunc <- function(data) {
print(data)
return(data[,1]*data[,2])
}
This obviously works:
mtcars[,eval(returnNames) := myfunc(.SD),.SDcols = SDnames,by = cyl]
But if I want to apply a dynamic function, something like this does not work:
functionCall <- "myfunc"
mtcars[,eval(returnNames) := lapply(.SD,eval(functionCall)),.SDcols = SDnames,by = cyl]
I get this error:
Error in `[.data.table`(mtcars, , `:=`(eval(returnNames), lapply(.SD, : attempt to apply non-function
Is using "apply" with "eval" the right idea, or am I on the wrong track entirely?
You don't want lapply. Since myfunc takes a data.table with multiple columns, you just want to feed such a data table into the function as one object.
To get the function you need get instead of eval
On the left-hand-side of :=, you can just put the character vector in parentheses, eval isn't needed
-
mtcars[, (returnNames) := get(functionCall)(.SD)
, .SDcols = SDnames
, by = cyl]
head(mtcars)
# mpg cyl disp hp drat wt qsec vs am gear carb calculatedColumn
# 1: 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 2310.0
# 2: 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 2310.0
# 3: 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 2120.4
# 4: 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 2354.0
# 5: 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 3272.5
# 6: 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 1900.5
The code above was run after the following code
mtcars <- as.data.table(mtcars)
returnNames <- "calculatedColumn"
SDnames <- c("mpg","hp")
myfunc <- function(data) {
print(data)
return(data[,1]*data[,2])
}
functionCall <- "myfunc"
I have the following code using ddply from plyr package:
ddply(mtcars,.(cyl),transform,freq=length(cyl))
The data.table version of this is :
DT<-data.table(mtcars)
DT[,freq:=.N,by=cyl]
How can I extend this when I have more than one function like the one below?
Now, I want to perform more than one function on ddply and data.table:
ddply(mtcars,.(cyl),transform,freq=length(cyl),sum=sum(mpg))
DT[,list(freq=.N,sum=sum(mpg)),by=cyl]
But, data.table gives me only three columns cyl,freq, and sum. Well, I can do like this:
DT[,list(freq=.N,sum=sum(mpg),mpg,disp,hp,drat,wt,qsec,vs,am,gear,carb),by=cyl]
But, I have large number of variables in my read data and I want all of them to be there as in ddply(...transform....). Is there shortcut in data.table just like doing := when we have only one function (as above) or something like this paste(names(mtcars),collapse=",") within data.table?
Note: I also have a large number of function to run. So, I can't repeat =: a number of times (but I would prefer this if lapply can be applied here).
Use backquoted := like this...
DT[ , `:=`( freq = .N , sum = sum(mpg) ) , by=cyl ]
head( DT , 3 )
# mpg cyl disp hp drat wt qsec vs am gear carb freq sum
#1: 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 7 138.2
#2: 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 7 138.2
#3: 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 11 293.3
Also useful in some situations:
newvars <- c("freq","sum")
DT[, `:=`(eval(newvars), list(.N,sum(mpg)))]