CGAL Point_2 Polygon_set_2 Distance - polygon

I've been searching google for a while now and I think I'm doing something wrong. As the title suggests, I'm logging for the cgal-way to determine the min distance of a Point_2 to a Polygon_set_2. Did I overlook something in the documentation? I did iterator over the edges of every polygon in the set to determine it "by hand" but that's awfully slow and doesn't exploit the arrangement of the Polygon_set_2.

The easiest way I see is to locate the point in the underlying arrangement and then find the closest segment from the edges of the cell the point is located on.
See this section of the user manual and the corresponding reference manual.

Related

how to determine OpenGL winding based on normals?

I am trying to understand how to manually generate objects.
I have a mesh, part of which I delete and create a new geometry in its place. I have information about the normals of deleted vertices. On the basis of which I have to build new faces (in a different size and quantity) looking in the same direction.
But I don’t understand how to choose the correct winding. It sounds easy when the lessons talk about CCW winding in screen space. But what if I have a bunch of almost chaotic points in the model space? How then to determine this CCW, which axis is used for this? I suggest that the nearest old normals might help. But what is the cheapest method to determine the correct order?
It turned out to be easier than I thought. It is necessary to find the cross product of the first two vectors from the vertices of a triangle, then find the dot of the resulting vector and the normal vector, if the result is negative, then during generation it is necessary to change the order of vertices.

How to implement KdTree using PCLPointCloud2 used in loadOBJfile in point cloud library?

Okay, so I have one OBJ file which I read into PCLpointcloud2. Now I want to feed it into a K-dTree. Which is not taking PCLPointCloud2 as input. I want to query any general point if it lies on the surface of my OBJ file.
I am finding it hard to understand their documentation. So how can it be done?
Plus, kindly point me to a good reference easily interpretable. And what is "PointT" BTW? Is it custom build type defined by us? please elaborate.
Look at the code in the provided tool pcl_mesh_sampling (in the PCL code directory under tools/mesh_sampling.cpp). It is relatively simple. It loads a model from PLY or OBJ then for each triangle it samples random points from the triangle. The final point cloud then undergoes a voxel-grid sample to make the points relatively uniform. Alternatively, you can just run the pcl_mesh_sampling program on your obj file to get an output PCD which you can then visualise with pcl_viewer before loading the PCD file into your own code.
Once you have the final point cloud, you can build and use a KD-Tree as per http://pointclouds.org/documentation/tutorials/kdtree_search.php
PointT is the template argument. The point cloud library can handle a variety of point types, from simple PointXYZ (having just x,y,z) to more complicated points like PointXYZRGBNormal (having x,y,z,normal_x,normal_y,normal_z, curvature, r, g, and b channels). Each algorithm is templated on the point type that you want to use. It would probably be easier if you used PointXYZ with your OBJ file, so use pcl::PointXYZ for all your template arguments. For more on templates see http://www.tutorialspoint.com/cplusplus/cpp_templates.htm and http://pointclouds.org/documentation/tutorials/adding_custom_ptype.php.
Update (reply to latest comment)
Added here because this reply is too long for a comment.
I think I see what you are getting at. So when you sample points from the point cloud & build a KD-tree of the object surface, and for each point you keep track which faces are nearby that point (probably all the faces adjacent to the face from which the point was sampled should be sufficient? Just one face is definitely insufficient). Then when the query point is given, you find the nearest point in the KD-tree and check whether the query point is on the "outside" or inside of the full list of nearby faces associated with that point in the KD-tree. If it's on the "inside" of all of them perhaps it is an interior point. But I cannot guarantee that this is true. That is my thinking on that question at the moment. But I do wonder if you want a mesh-based approach really. By the way, if you break your mesh up into convex parts then you can have nice guarantees when processing each convex part.

Create graph of distinct routes

Problem I have a binary image with traversable and blocked cells. On this map points of interest (POIs) are set. My goal is to create a graph from these POIs respecting obstacles (see images) which represents all possible and truly distinct paths. Two paths are truly distinct if they can not be joined into one path. E.g. if the outside of the building in picture 1 was accessible a path around the building could not be merged with one through the building.
Researched I have looked at maze solvers and various shortest path finding algorithms (e.g. A*, Theta*, Phi*) and while they'd be useful for this problem they only search for a path between two points and don't consider already established routes.
Best Guess I am considering using Phi* to search for all possible routes and merge afterwards using magic (ideas?), but this will not give me truly distinct alternatives.
Can someone help?
P.S.: I'm using C++ and am not really eager to do this by myself, so if there is a library which already does this... :)
I found (and decided to use) a parallel thinning algorithm (Zhan-Suen for now) to create an image skeleton. This effectively makes the assumption that the geometry shapes the common routes, which is fine I think.
By using the Rutovitz crossing number I can extract bifurcations and crossings from the resulting skeleton. Then I'll determine the shortest line of sight from my Points of Interest (using Bresenham's algorithm) to the extracted crossings to connect them to the graph.
I hope this will help someone along the road :)

How can I produce visualizations combining network graphs and imaginary maps?

Basically, I'm looking for something like this awesome research project: Gmap, which was referenced in this related SO question.
It's a rather novel data visualization that combines a network graph with an imaginary set of regions that looks like a map. Basically, the map-ification helps humans comprehend the enormous data set better.
Cool, huh? GMap doesn't appear to be open source, though I plan to contact the authors.
I already know how to create a network graph with a force-directed layout (currently using Prefuse/Flare), so an answer could be a way to layer a mapping algorithm on top of an existing graph. I'm also not concerned about the client-side at all right now - this would be a backend process, and I am flexible about technology stack and data output at this stage.
There's also this paper that describes the algorithm backing GMap. If you have heard of Voronoi diagrams (which rock, but make my head hurt), this paper is for you. I quit after Calc 1, though, so I'm hoping to avoid remembering what sigmas and epsilons are.
As a start, could you do a simple closest point sort of an algorithm? So it looks something like this: You have your force directed layout and have computed some sort of bounding box. Now you want to render it. Adjust your bounding box to line up to the origin and then as you calculate the color of each pixel, find it's closest point. This should generate some semblance of regions and should be quite simple to try out. Of course, it isn't going to be as pretty as GMap, but maybe a start? The runtime would be awful, but... I don't know about you but computing boundary lines directly sounds a lot harder to me.

Find All Cycle Bases In a Graph, With the Vertex Coordinates Given

A similar question is posted here.
I have an undirected graph with Vertex V and Edge E. I am looking for an algorithm to identify all the cycle bases in that graph. An example of such a graph is shown below:
Now, all the vertex coordinates are known ( unlike previous question, and contrary to the explanation in the above diagram), therefore it is possible to find the smallest cycles that encompass the whole graph.
In this graph, it is possible that there are edges that don't form any cycles.
What is the best algorithm to do this?
Here's another example that you can take a look at:
Assuming that e1 is the edge that gets picked first, and the arrow shows the direction of the edge.
I haven't tried this and it is rather greedy but should work:
Pick one node
Go to one it's neighbors's
Keep on going until you get back to your starting node, but you're not allowed to visit an old node.
If you get a cycle save it if it doesn't already exist or a subset of those node make up a cycle. If the node in the cycle is a subset of the nodes in another cycle remove the larger cycle (or maybe split it in two?)
Start over at 2 with a new neighbor.
Start over at 1 with a new node.
Comments: At 3 you should of course do the same thing as for step 2, so take all possible paths.
Maybe that's a start? As I said, I haven't tried it so it is not optimized.
EDIT: An undocumented and not optimized version of one implementation of the algorithm can be found here: https://gist.github.com/750015. But, it doesn't solve the solution completely since it can only recognize "true" subsets.

Resources