How to get Spearman R2 value using multiple linear regression - r

The R2 obtained from a linear regression is the Pearson correlation coefficient. However, I am wondering if I could get Spearman rank coefficient instead of Pearson in a linear regression.
I would be especially interested to get it using R with the package leaps:
library(leaps)
#Plotting function plot.regsubsets2 <-
function (x, labels = obj$xnames, main = NULL, scale = c("bic",
"Cp", "adjr2", "r2"), col = gray(seq(0, 0.9, length = 10)),
...)
{
obj <- x
lsum <- summary(obj)
par(mar = c(7, 5, 6, 3) + 0.1)
nmodels <- length(lsum$rsq)
np <- obj$np
propscale <- FALSE
sscale <- pmatch(scale[1], c("bic", "Cp", "adjr2", "r2"),
nomatch = 0)
if (sscale == 0)
stop(paste("Unrecognised scale=", scale))
if (propscale)
stop(paste("Proportional scaling only for probabilities"))
yscale <- switch(sscale, lsum$bic, lsum$cp, lsum$adjr2, lsum$rsq)
up <- switch(sscale, -1, -1, 1, 1)
index <- order(yscale * up)
colorscale <- switch(sscale, yscale, yscale, -log(pmax(yscale,
1e-04)), -log(pmax(yscale, 1e-04)))
image(z = t(ifelse(lsum$which[index, ], colorscale[index],
NA + max(colorscale) * 1.5)), xaxt = "n", yaxt = "n",
x = (1:np), y = 1:nmodels, xlab = "", ylab = scale[1],
col = col)
laspar <- par("las")
on.exit(par(las = laspar))
par(las = 2)
axis(1, at = 1:np, labels = labels, ...) # I modified this line
axis(2, at = 1:nmodels, labels = signif(yscale[index], 2))
if (!is.null(main))
title(main = main)
box()
invisible(NULL)
}
#Leap
leaps = regsubets(y~x1+x2+x2, data=mydf, nbest=10)
summary(leaps)
plot.regsubsets2(leaps, scale='r2')
Again, I would like if it possible to screen Spearman instead of Pearson (r2) in the plot.

Related

Dot Plot include vertical line and dots of different colors

I needed to include in the code below, a vertical line,
for example, in position x = 5 and that all points smaller than 5 have another color,
for example blue.
The values of a variable can be read from the x-axis, and the y-axis shows the order of the observations in the variable (from bottom to top). Isolated points as the far ends, and on either side in a plot, suggest potentional outliers
Thanks
library(dplyr)
library(lattice)
n = 1000
df <- tibble(
xx1 = runif(n, min = 3, max = 10),
xx2 = runif(n, min = 3, max = 10),
xx3 = runif(n, min = 3, max = 10)
)
MyVar <- c("xx1","xx2","xx3")
MydotplotBR <- function(DataSelected){
P <- dotplot(as.matrix(as.matrix(DataSelected)),
groups=FALSE,
strip = strip.custom(bg = 'white',
par.strip.text = list(cex = 1.2)),
scales = list(x = list(relation = "same",tck = 1,
draw = TRUE, at=seq(0,10,1)),x=list(at=seq),
y = list(relation = "free", draw = FALSE),
auto.key = list(x =1)),
col=10,
axes = FALSE,
cex = 0.4, pch = 5,
xlim=c(0,10),
xlab = list(label = "Variable Value", cex = 1.5),
ylab = list(label = "Order of data in the file", cex = 1.5))
print(P)
}
(tempoi <- Sys.time())
Vertemp <- MydotplotBR(df[,MyVar])
(tempof <- Sys.time()-tempoi)
I find it weird that you want a color dependent only on the x-axis when values are also used on the y-axis of other plots.
Nevertheless, here's a homemade pairs_cutoff() function doing what you want.
pairs_cutoff <- function(data, cutoff, cols = c("red", "blue"),
only.lower = F, ...){
data <- as.data.frame(data)
cns <- colnames(data)
nc <- ncol(data)
layout(matrix(seq_len(nc^2), ncol = nc))
invisible(
sapply(seq_len(nc), function(i){
sapply(seq_len(nc), function(j){
if(i == j){
plot.new()
legend("center", bty = "n", title = cns[i], cex = 1.5, text.font = 2, legend = "")
} else {
if(j < i & only.lower)
plot.new()
else{
if(is.null(cutoff))
cols <- cols[1]
plot(data[,i], data[,j], col = cols[(data[,i] < cutoff) + 1],
xlab = cns[i], ylab = cns[j], ...)
}
}
})
})
)
}
Using your suggested data :
n = 1000
dat <- tibble(
xx1 = runif(n, min = 3, max = 10),
xx2 = runif(n, min = 3, max = 10),
xx3 = runif(n, min = 3, max = 10)
)
pairs_cutoff(dat, cutoff = 5, only.lower = T)
outputs the following plot :
You can specify extra parameters to the plot function (eg. pch) directly to pairs_cutoff.
Also, if you want the full symmetric grid of plots, set only.lower = F.

Changing the colour of a calibration plot

I've been generating calibration plots for my cph models of survival data. However, the default setting puts the "ideal" line in grey, which makes it difficult to discriminate. I've tried to specify the colour parameters in plot(), but this obviously only changes the line for "observed". What can I pass in plot() to change the line of the "ideal" line in a calibration plot generated in rms?
Here is one option:
Let's say you have code to create a cph model of survival data and use calibrate from the rms package:
library(rms)
set.seed(1)
n <- 200
d.time <- rexp(n)
x1 <- runif(n)
x2 <- factor(sample(c('a', 'b', 'c'), n, TRUE))
f <- cph(Surv(d.time) ~ pol(x1,2) * x2, x=TRUE, y=TRUE, surv=TRUE,time.inc=1.5)
cal <- calibrate(f, u=1.5, cmethod='KM', m=50, B=20)
This will generate a calibrate object:
R> class(cal)
[1] "calibrate"
If you are using plot on this object, you can discover the function being called in rms:
R> getAnywhere("plot.calibrate.default")
A single object matching ‘plot.calibrate.default’ was found
It was found in the following places
registered S3 method for plot from namespace rms
namespace:rms
with value
function (x, xlab, ylab, xlim, ylim, legend = TRUE, subtitles = TRUE,
cex.subtitles = 0.75, riskdist = TRUE, scat1d.opts = list(nhistSpike = 200),
...)
You can create your own function based on this function, and alter the color of the ideal line. In this case, we make the ideal line green (and revise the text labels to match):
myplot <- function (x, xlab, ylab, subtitles = TRUE, conf.int = TRUE, cex.subtitles = 0.75,
riskdist = TRUE, add = FALSE, scat1d.opts = list(nhistSpike = 200),
par.corrected = NULL, ...)
{
at <- attributes(x)
u <- at$u
units <- at$units
if (length(par.corrected) && !is.list(par.corrected))
stop("par.corrected must be a list")
z <- list(col = "blue", lty = 1, lwd = 1, pch = 4)
if (!length(par.corrected))
par.corrected <- z
else for (n in setdiff(names(z), names(par.corrected))) par.corrected[[n]] <- z[[n]]
predicted <- at$predicted
if ("KM" %in% colnames(x)) {
type <- "stratified"
pred <- x[, "mean.predicted"]
cal <- x[, "KM"]
cal.corrected <- x[, "KM.corrected"]
se <- x[, "std.err"]
}
else {
type <- "smooth"
pred <- x[, "pred"]
cal <- x[, "calibrated"]
cal.corrected <- x[, "calibrated.corrected"]
se <- NULL
}
un <- if (u == 1)
paste(units, "s", sep = "")
else units
if (missing(xlab))
xlab <- paste("Predicted ", format(u), units, "Survival")
if (missing(ylab))
ylab <- paste("Fraction Surviving ", format(u), " ",
un, sep = "")
if (length(se) && conf.int) {
ciupper <- function(surv, d) ifelse(surv == 0, 0, pmin(1,
surv * exp(d)))
cilower <- function(surv, d) ifelse(surv == 0, 0, surv *
exp(-d))
errbar(pred, cal, cilower(cal, 1.959964 * se), ciupper(cal,
1.959964 * se), xlab = xlab, ylab = ylab, type = "b",
add = add, ...)
}
else if (add)
lines(pred, cal, type = if (type == "smooth")
"l"
else "b")
else plot(pred, cal, xlab = xlab, ylab = ylab, type = if (type ==
"smooth")
"l"
else "b", ...)
err <- NULL
if (riskdist && length(predicted)) {
do.call("scat1d", c(list(x = predicted), scat1d.opts))
if (type == "smooth") {
s <- !is.na(pred + cal.corrected)
err <- predicted - approxExtrap(pred[s], cal.corrected[s],
xout = predicted, ties = mean)$y
}
}
if (subtitles && !add) {
if (type == "smooth") {
Col <- par.corrected$col
substring(Col, 1, 1) <- toupper(substring(Col, 1,
1))
title(sub = sprintf("Black: observed Green: ideal\n%s : optimism corrected",
Col), adj = 0, cex.sub = cex.subtitles)
w <- if (length(err))
paste("B=", at$B, " based on ", at$what, "\nMean |error|=",
round(mean(abs(err)), 3), " 0.9 Quantile=",
round(quantile(abs(err), 0.9, na.rm = TRUE),
3), sep = "")
else paste("B=", at$B, "\nBased on ", at$what, sep = "")
title(sub = w, adj = 1, cex.sub = cex.subtitles)
}
else {
title(sub = paste("n=", at$n, " d=", at$d, " p=",
at$p, ", ", at$m, " subjects per group\nGreen: ideal",
sep = ""), adj = 0, cex.sub = cex.subtitles)
title(sub = paste("X - resampling optimism added, B=",
at$B, "\nBased on ", at$what, sep = ""), adj = 1,
cex.sub = cex.subtitles)
}
}
abline(0, 1, col = "green")
if (type == "stratified")
points(pred, cal.corrected, pch = par.corrected$pch,
col = par.corrected$col)
else lines(pred, cal.corrected, col = par.corrected$col,
lty = par.corrected$lty, lwd = par.corrected$lwd)
invisible()
}
Then you can use your custom function with your calibrate object:
myplot(cal)

BRT: Add gradient colors to interaction plots using gbm.perspec

I would like to add a gradient of colours following the fitted values (e.g. higher fitted values darker colours, lower fitted values lighter colours) in my three-dimensional dependence plots.
I have used the example presented in dismo package:
library(dismo)
data(Anguilla_train)
angaus.tc5.lr01 <- gbm.step(data=Anguilla_train, gbm.x = 3:13, gbm.y = 2,
family = "bernoulli", tree.complexity = 5, learning.rate = 0.01,
bag.fraction = 0.5)
# Find interactions in the gbm model:
find.int <- gbm.interactions( angaus.tc5.lr01)
find.int$interactions
find.int$rank.list
I have only managed to add the same colour to the whole plot:
gbm.perspec( angaus.tc5.lr01, 7, 1,
x.label = "USRainDays",
y.label = "SegSumT",
z.label = "Fitted values",
z.range=c(0,0.435),
col="blue")
Or to add a gradient colour but not following the fitted values:
gbm.perspec( angaus.tc5.lr01, 7, 1,
x.label = "USRainDays",
y.label = "SegSumT",
z.label = "Fitted values",
col=heat.colors(50),
z.range=c(0,0.435))
I also checked the code of function gbm.perspec, and If I understood correctly the fitted values are call inside the formula as "prediction", and later on are part of the "pred.matrix" that is passed to the final plotting: persp(x = x.var, y = y.var, z = pred.matrix...), but I have no managed to access them from the gbm.perspec formula. I tried to modified the gbm.perpec function by adding "col=heat.colors(100)[round(pred.matrix*100, 0)]" into the persp() inside the function, but it does not do what I am looking for:
persp(x = x.var, y = y.var, z = pred.matrix, zlim = z.range,
xlab = x.label, ylab = y.label, zlab = z.label,
theta = theta, phi = phi, r = sqrt(10), d = 3,
ticktype = ticktype,
col=heat.colors(100)[round(pred.matrix*100, 0)],
mgp = c(4, 1, 0), ...)
I believe the solution might come from modifying the gbm.perpec function, do you know how?
Thank you for your time!
Modifying the gbm.perspec function is certainly an option, although if you use the predicted values from the gbm model and plot them onto a 3D scatterplot from another package you should be able to achieve it as well.
Here's an option using the plot3Drgl package, original code was provided by #Fabrice.
library(dismo); library(plot3Drgl); library(devEMF)
data(Anguilla_train)
angaus.tc5.lr01 <- gbm.step(data=Anguilla_train, gbm.x = 3:13, gbm.y = 2,
family = "bernoulli", tree.complexity = 5, learning.rate = 0.01,
bag.fraction = 0.5)
# Find interactions in the gbm model:
find.int <- gbm.interactions( angaus.tc5.lr01)
find.int$interactions
find.int$rank.list
d<-plot(angaus.tc5.lr01,c(1,7),return.grid=T)
x <- d$SegSumT
y <- d$USRainDays
z <- d$y
grid.lines = 30
elevation.site = loess(z ~ x*y, data=d, span=1, normalize = FALSE)
x.pred <- seq(min(x), max(x), length.out = grid.lines) # x grid
y.pred <- seq(min(y), max(y), length.out = grid.lines) # y grid
xy <- expand.grid( x = x.pred, y = y.pred) # final grid combined
z.site=matrix(predict(elevation.site, newdata = xy), nrow = grid.lines, ncol = grid.lines) # predicedt matrix
scatter3D(x, y, z, theta = 160, phi = 35, # x y z coords and angle of plot
clab = c(""), # Needs moving - label legend
colkey = list(side = 4, length = 0.65,
adj.clab = 0.15, dist = -0.15, cex.clab = 0.6, cex.axis = 0.6), # change the location and length of legend, change position of label and legend
clim = c(-4,0.1),
bty = "b", # type of box
col = ramp.col(col = c("grey", "blue"), 200),
pch = 19, cex = 0.55, # shape and size of points
xlab = "SegSumT",
xlim=c(10,20),ylim=c(0,3.5), zlim=c(-4,0.1), d= 2,
ylab = "USRaindays",
zlab= "Fitted values", #axes labels
cex.lab = 0.8, font.lab = 1, cex.axis = 0.6, font.axis= 1, # size and font of axes and ticks
ticktype = "detailed", nticks = 5, # ticks and numer of ticks
#type = "h", # vertical lines
surf = list(x = x.pred, y = y.pred, z = z.site,
facets = NA, CI=NULL))
enter image description here
By tweaking with grid.lines and reversing the x axis you should be able to produce exactly what you want.
By incorporating some of the code found here into the gbm.perspec() source code you can create the desired effect.
First run
# Color palette (100 colors)
col.pal<-colorRampPalette(c("blue", "red"))
colors<-col.pal(100)
Then, add z.facet.center to gbm.perspec() source code after else and change the z in the code to pred.matrixas follows,
# and finally plot the result
#
if (!perspective) {
image(x = x.var, y = y.var, z = pred.matrix, zlim = z.range)
} else {
z.facet.center <- (pred.matrix[-1, -1] + pred.matrix[-1, -ncol(pred.matrix)] +
pred.matrix[-nrow(pred.matrix), -1] + pred.matrix[-nrow(pred.matrix), -ncol(pred.matrix)])/4
# Range of the facet center on a 100-scale (number of colors)
z.facet.range<-cut(z.facet.center, 100)
persp(x=x.var, y=y.var, z=pred.matrix, zlim= z.range, # input vars
xlab = x.label, ylab = y.label, zlab = z.label, # labels
theta=theta, phi=phi, r = sqrt(10), d = 3,
col=colors[z.facet.range],# viewing pars
ticktype = ticktype, mgp = c(4,1,0), ...) #
which will give you a plot like this (please note, this is not plotted using the sample dataset which is why the interaction effect is different than the plot in the question).
Alternatively, you can create a new function. The following example modifies gbm.perspec() to give a white-to-red gradient. Simply run the code in R, then change gbm.perspec() to gbm.perspec2()
# interaction function
# Color palette (100 colors)
col.pal<-colorRampPalette(c("white", "pink", "red"))
colors<-col.pal(100)
gbm.perspec2 <- function(gbm.object,
x = 1, # the first variable to be plotted
y = 2, # the second variable to be plotted
pred.means = NULL, # allows specification of values for other variables
x.label = NULL, # allows manual specification of the x label
x.range = NULL, # manual range specification for the x variable
y.label = NULL, # and y la seminar committeebel
z.label = "fitted value", #default z label
y.range = NULL, # and the y
z.range = NULL, # allows control of the vertical axis
leg.coords = NULL, #can specify coords (x, y) for legend
ticktype = "detailed",# specifiy detailed types - otherwise "simple"
theta = 55, # rotation
phi=40, # and elevation
smooth = "none", # controls smoothing of the predicted surface
mask = FALSE, # controls masking using a sample intensity model
perspective = TRUE, # controls whether a contour or perspective plot is drawn
...) # allows the passing of additional arguments to plotting routine
# useful options include shade, ltheta, lphi for controlling illumination
# and cex for controlling text size - cex.axis and cex.lab have no effect
{
if (! requireNamespace('gbm') ) { stop('you need to install the gbm package to use this function') }
requireNamespace('splines')
#get the boosting model details
gbm.call <- gbm.object$gbm.call
gbm.x <- gbm.call$gbm.x
n.preds <- length(gbm.x)
gbm.y <- gbm.call$gbm.y
pred.names <- gbm.call$predictor.names
family = gbm.call$family
# and now set up range variables for the x and y preds
have.factor <- FALSE
x.name <- gbm.call$predictor.names[x]
if (is.null(x.label)) {
x.label <- gbm.call$predictor.names[x]
}
y.name <- gbm.call$predictor.names[y]
if (is.null(y.label)) {
y.label <- gbm.call$predictor.names[y]
}
data <- gbm.call$dataframe[ , gbm.x, drop=FALSE]
n.trees <- gbm.call$best.trees
# if marginal variable is a vector then create intervals along the range
if (is.vector(data[,x])) {
if (is.null(x.range)) {
x.var <- seq(min(data[,x],na.rm=T),max(data[,x],na.rm=T),length = 50)
} else {
x.var <- seq(x.range[1],x.range[2],length = 50)
}
} else {
x.var <- names(table(data[,x]))
have.factor <- TRUE
}
if (is.vector(data[,y])) {
if (is.null(y.range)) {
y.var <- seq(min(data[,y],na.rm=T),max(data[,y],na.rm=T),length = 50)
} else {y.var <- seq(y.range[1],y.range[2],length = 50)}
} else {
y.var <- names(table(data[,y]))
if (have.factor) { #check that we don't already have a factor
stop("at least one marginal predictor must be a vector!")
} else {have.factor <- TRUE}
}
pred.frame <- expand.grid(list(x.var,y.var))
names(pred.frame) <- c(x.name,y.name)
pred.rows <- nrow(pred.frame)
#make sure that the factor variable comes first
if (have.factor) {
if (is.factor(pred.frame[,2])) { # swap them about
pred.frame <- pred.frame[,c(2,1)]
x.var <- y.var
}
}
j <- 3
# cycle through the predictors
# if a non-target variable find the mean
for (i in 1:n.preds) {
if (i != x & i != y) {
if (is.vector(data[,i])) {
m <- match(pred.names[i],names(pred.means))
if (is.na(m)) {
pred.frame[,j] <- mean(data[,i],na.rm=T)
} else pred.frame[,j] <- pred.means[m]
}
if (is.factor(data[,i])) {
m <- match(pred.names[i],names(pred.means))
temp.table <- table(data[,i])
if (is.na(m)) {
pred.frame[,j] <- rep(names(temp.table)[2],pred.rows)
} else {
pred.frame[,j] <- pred.means[m]
}
pred.frame[,j] <- factor(pred.frame[,j],levels=names(temp.table))
}
names(pred.frame)[j] <- pred.names[i]
j <- j + 1
}
}
#
# form the prediction
#
#assign("pred.frame", pred.frame, pos=1)
prediction <- gbm::predict.gbm(gbm.object,pred.frame,n.trees = n.trees, type="response")
#assign("prediction", prediction, pos=1, immediate =T)
# model smooth if required
if (smooth == "model") {
pred.glm <- glm(prediction ~ ns(pred.frame[,1], df = 8) * ns(pred.frame[,2], df = 8), data=pred.frame,family=poisson)
prediction <- fitted(pred.glm)
}
# report the maximum value and set up realistic ranges for z
max.pred <- max(prediction)
message("maximum value = ",round(max.pred,2),"\n")
if (is.null(z.range)) {
if (family == "bernoulli") {
z.range <- c(0,1)
} else if (family == "poisson") {
z.range <- c(0,max.pred * 1.1)
} else {
z.min <- min(data[,y],na.rm=T)
z.max <- max(data[,y],na.rm=T)
z.delta <- z.max - z.min
z.range <- c(z.min - (1.1 * z.delta), z.max + (1.1 * z.delta))
}
}
# now process assuming both x and y are vectors
if (have.factor == FALSE) {
# form the matrix
pred.matrix <- matrix(prediction,ncol=50,nrow=50)
# kernel smooth if required
if (smooth == "average") { #apply a 3 x 3 smoothing average
pred.matrix.smooth <- pred.matrix
for (i in 2:49) {
for (j in 2:49) {
pred.matrix.smooth[i,j] <- mean(pred.matrix[c((i-1):(i+1)),c((j-1):(j+1))])
}
}
pred.matrix <- pred.matrix.smooth
}
# mask out values inside hyper-rectangle but outside of sample space
if (mask) {
mask.trees <- gbm.object$gbm.call$best.trees
point.prob <- gbm::predict.gbm(gbm.object[[1]],pred.frame, n.trees = mask.trees, type="response")
point.prob <- matrix(point.prob,ncol=50,nrow=50)
pred.matrix[point.prob < 0.5] <- 0.0
}
#
# and finally plot the result
#
if (!perspective) {
image(x = x.var, y = y.var, z = pred.matrix, zlim = z.range)
} else {
z.facet.center <- (pred.matrix[-1, -1] + pred.matrix[-1, -ncol(pred.matrix)] +
pred.matrix[-nrow(pred.matrix), -1] + pred.matrix[-nrow(pred.matrix), -ncol(pred.matrix)])/4
# Range of the facet center on a 100-scale (number of colors)
z.facet.range<-cut(z.facet.center, 100)
persp(x=x.var, y=y.var, z=pred.matrix, zlim= z.range, # input vars
xlab = x.label, ylab = y.label, zlab = z.label, # labels
theta=theta, phi=phi, r = sqrt(10), d = 3,
col=colors[z.facet.range],# viewing pars
ticktype = ticktype, mgp = c(4,1,0), ...) #
}
}
if (have.factor) {
# we need to plot values of y for each x
factor.list <- names(table(pred.frame[,1]))
n <- 1
#add this bit so z.range still works as expected:
if (is.null(z.range)) {
vert.limits <- c(0, max.pred * 1.1)
} else {
vert.limits <- z.range
}
plot(pred.frame[pred.frame[,1]==factor.list[1],2],
prediction[pred.frame[,1]==factor.list[1]],
type = 'l',
#ylim = c(0, max.pred * 1.1),
ylim = vert.limits,
xlab = y.label,
ylab = z.label, ...)
for (i in 2:length(factor.list)) {
#factor.level in factor.list) {
factor.level <- factor.list[i]
lines(pred.frame[pred.frame[,1]==factor.level,2],
prediction[pred.frame[,1]==factor.level], lty = i)
}
# now draw a legend
if(is.null(leg.coords)){
x.max <- max(pred.frame[,2])
x.min <- min(pred.frame[,2])
x.range <- x.max - x.min
x.pos <- c(x.min + (0.02 * x.range),x.min + (0.3 * x.range))
y.max <- max(prediction)
y.min <- min(prediction)
y.range <- y.max - y.min
y.pos <- c(y.min + (0.8 * y.range),y.min + (0.95 * y.range))
legend(x = x.pos, y = y.pos, factor.list, lty = c(1:length(factor.list)), bty = "n")
} else {
legend(x = leg.coords[1], y = leg.coords[2], factor.list, lty = c(1:length(factor.list)), bty = "n", ncol = 2)
}
}
}

Graphical output of density for the function gammamixEM (package mixtools)

I'm using the function gammamixEM from the package mixtools. How can I return the graphical output of density as in the function normalmixEM (i.e., the second plot in plot(...,which=2)) ?
Update:
Here is a reproducible example for the function gammamixEM:
x <- c(rgamma(200, shape = 0.2, scale = 14), rgamma(200,
shape = 32, scale = 10), rgamma(200, shape = 5, scale = 6))
out <- gammamixEM(x, lambda = c(1, 1, 1)/3, verb = TRUE)
Here is a reproducible example for the function normalmixEM:
data(faithful)
attach(faithful)
out <- normalmixEM(waiting, arbvar = FALSE, epsilon = 1e-03)
plot(out, which=2)
I would like to obtain this graphical output of density from the function gammamixEM.
Here you go.
out <- normalmixEM(waiting, arbvar = FALSE, epsilon = 1e-03)
x <- out
whichplots <- 2
density = 2 %in% whichplots
loglik = 1 %in% whichplots
def.par <- par(ask=(loglik + density > 1), "mar") # only ask and mar are changed
mix.object <- x
k <- ncol(mix.object$posterior)
x <- sort(mix.object$x)
a <- hist(x, plot = FALSE)
maxy <- max(max(a$density), .3989*mix.object$lambda/mix.object$sigma)
I just had to dig into the source code of plot.mixEM
So, now to do this with gammamixEM:
x <- c(rgamma(200, shape = 0.2, scale = 14), rgamma(200,
shape = 32, scale = 10), rgamma(200, shape = 5, scale = 6))
gammamixEM.out <- gammamixEM(x, lambda = c(1, 1, 1)/3, verb = TRUE)
mix.object <- gammamixEM.out
k <- ncol(mix.object$posterior)
x <- sort(mix.object$x)
a <- hist(x, plot = FALSE)
maxy <- max(max(a$density), .3989*mix.object$lambda/mix.object$sigma)
main2 <- "Density Curves"
xlab2 <- "Data"
col2 <- 2:(k+1)
hist(x, prob = TRUE, main = main2, xlab = xlab2,
ylim = c(0,maxy))
for (i in 1:k) {
lines(x, mix.object$lambda[i] *
dnorm(x,
sd = sd(x)))
}
I believe it should be pretty straight forward to continue this example a bit, if you want to add the labels, smooth lines, etc. Here's the source of the plot.mixEM function.

how to create a heatmap with a fixed external hierarchical cluster

I have a matrix data, and want to visualize it with heatmap. The rows are species, so I want visualize the phylogenetic tree aside the rows and reorder the rows of the heatmap according the tree. I know the heatmap function in R can create the hierarchical clustering heatmap, but how can I use my phylogenetic clustering instead of the default created distance clustering in the plot?
First you need to use package ape to read in your data as a phylo object.
library(ape)
dat <- read.tree(file="your/newick/file")
#or
dat <- read.tree(text="((A:4.2,B:4.2):3.1,C:7.3);")
The following only works if your tree is ultrametric.
The next step is to transform your phylogenetic tree into class dendrogram.
Here is an example:
data(bird.orders) #This is already a phylo object
hc <- as.hclust(bird.orders) #Compulsory step as as.dendrogram doesn't have a method for phylo objects.
dend <- as.dendrogram(hc)
plot(dend, horiz=TRUE)
mat <- matrix(rnorm(23*23),nrow=23, dimnames=list(sample(bird.orders$tip, 23), sample(bird.orders$tip, 23))) #Some random data to plot
First we need to order the matrix according to the order in the phylogenetic tree:
ord.mat <- mat[bird.orders$tip,bird.orders$tip]
Then input it to heatmap:
heatmap(ord.mat, Rowv=dend, Colv=dend)
Edit: Here is a function to deal with ultrametric and non-ultrametric trees.
heatmap.phylo <- function(x, Rowp, Colp, ...){
# x numeric matrix
# Rowp: phylogenetic tree (class phylo) to be used in rows
# Colp: phylogenetic tree (class phylo) to be used in columns
# ... additional arguments to be passed to image function
x <- x[Rowp$tip, Colp$tip]
xl <- c(0.5, ncol(x)+0.5)
yl <- c(0.5, nrow(x)+0.5)
layout(matrix(c(0,1,0,2,3,4,0,5,0),nrow=3, byrow=TRUE),
width=c(1,3,1), height=c(1,3,1))
par(mar=rep(0,4))
plot(Colp, direction="downwards", show.tip.label=FALSE,
xlab="",ylab="", xaxs="i", x.lim=xl)
par(mar=rep(0,4))
plot(Rowp, direction="rightwards", show.tip.label=FALSE,
xlab="",ylab="", yaxs="i", y.lim=yl)
par(mar=rep(0,4), xpd=TRUE)
image((1:nrow(x))-0.5, (1:ncol(x))-0.5, x,
xaxs="i", yaxs="i", axes=FALSE, xlab="",ylab="", ...)
par(mar=rep(0,4))
plot(NA, axes=FALSE, ylab="", xlab="", yaxs="i", xlim=c(0,2), ylim=yl)
text(rep(0,nrow(x)),1:nrow(x),Rowp$tip, pos=4)
par(mar=rep(0,4))
plot(NA, axes=FALSE, ylab="", xlab="", xaxs="i", ylim=c(0,2), xlim=xl)
text(1:ncol(x),rep(2,ncol(x)),Colp$tip, srt=90, pos=2)
}
Here is with the previous (ultrametric) example:
heatmap.phylo(mat, bird.orders, bird.orders)
And with a non-ultrametric:
cat("owls(((Strix_aluco:4.2,Asio_otus:4.2):3.1,Athene_noctua:7.3):6.3,Tyto_alba:13.5);",
file = "ex.tre", sep = "\n")
tree.owls <- read.tree("ex.tre")
mat2 <- matrix(rnorm(4*4),nrow=4,
dimnames=list(sample(tree.owls$tip,4),sample(tree.owls$tip,4)))
is.ultrametric(tree.owls)
[1] FALSE
heatmap.phylo(mat2,tree.owls,tree.owls)
First, I create a reproducible example. Without data we can just guess what you want. So please try to do better next time(specially you are confirmed user). For example you can do this to create your tree in newick format:
tree.text='(((XXX:4.2,ZZZ:4.2):3.1,HHH:7.3):6.3,AAA:13.6);'
Like #plannpus, I am using ape to converts this tree to a hclust class. Unfortunatlty, it looks that we can do the conversion only for ultrametric tree: the distance from the root to each tip is the same.
library(ape)
tree <- read.tree(text='(((XXX:4.2,ZZZ:4.2):3.1,HHH:7.3):6.3,AAA:13.6);')
is.ultrametric(tree)
hc <- as.hclust.phylo(tree)
Then I am using dendrogramGrob from latticeExtra to plot my tree. and levelplot from lattice to draw the heatmap.
library(latticeExtra)
dd.col <- as.dendrogram(hc)
col.ord <- order.dendrogram(dd.col)
mat <- matrix(rnorm(4*4),nrow=4)
colnames(mat) <- tree$tip.label
rownames(mat) <- tree$tip.label
levelplot(mat[tree$tip,tree$tip],type=c('g','p'),
aspect = "fill",
colorkey = list(space = "left"),
legend =
list(right =
list(fun = dendrogramGrob,
args =
list(x = dd.col,
side = "right",
size = 10))),
panel=function(...){
panel.fill('black',alpha=0.2)
panel.levelplot.points(...,cex=12,pch=23)
}
)
I adapted plannapus' answer to deal with more than one tree (also cutting out some options I didn't need in the process):
library(ape)
heatmap.phylo <- function(x, Rowp, Colp, breaks, col, denscol="cyan", respect=F, ...){
# x numeric matrix
# Rowp: phylogenetic tree (class phylo) to be used in rows
# Colp: phylogenetic tree (class phylo) to be used in columns
# ... additional arguments to be passed to image function
scale01 <- function(x, low = min(x), high = max(x)) {
x <- (x - low)/(high - low)
x
}
col.tip <- Colp$tip
n.col <- 1
if (is.null(col.tip)) {
n.col <- length(Colp)
col.tip <- unlist(lapply(Colp, function(t) t$tip))
col.lengths <- unlist(lapply(Colp, function(t) length(t$tip)))
col.fraction <- col.lengths / sum(col.lengths)
col.heights <- unlist(lapply(Colp, function(t) max(node.depth.edgelength(t))))
col.max_height <- max(col.heights)
}
row.tip <- Rowp$tip
n.row <- 1
if (is.null(row.tip)) {
n.row <- length(Rowp)
row.tip <- unlist(lapply(Rowp, function(t) t$tip))
row.lengths <- unlist(lapply(Rowp, function(t) length(t$tip)))
row.fraction <- row.lengths / sum(row.lengths)
row.heights <- unlist(lapply(Rowp, function(t) max(node.depth.edgelength(t))))
row.max_height <- max(row.heights)
}
cexRow <- min(1, 0.2 + 1/log10(n.row))
cexCol <- min(1, 0.2 + 1/log10(n.col))
x <- x[row.tip, col.tip]
xl <- c(0.5, ncol(x)+0.5)
yl <- c(0.5, nrow(x)+0.5)
screen_matrix <- matrix( c(
0,1,4,5,
1,4,4,5,
0,1,1,4,
1,4,1,4,
1,4,0,1,
4,5,1,4
) / 5, byrow=T, ncol=4 )
if (respect) {
r <- grconvertX(1, from = "inches", to = "ndc") / grconvertY(1, from = "inches", to = "ndc")
if (r < 1) {
screen_matrix <- screen_matrix * matrix( c(r,r,1,1), nrow=6, ncol=4, byrow=T)
} else {
screen_matrix <- screen_matrix * matrix( c(1,1,1/r,1/r), nrow=6, ncol=4, byrow=T)
}
}
split.screen( screen_matrix )
screen(2)
par(mar=rep(0,4))
if (n.col == 1) {
plot(Colp, direction="downwards", show.tip.label=FALSE,xaxs="i", x.lim=xl)
} else {
screens <- split.screen( as.matrix(data.frame( left=cumsum(col.fraction)-col.fraction, right=cumsum(col.fraction), bottom=0, top=1)))
for (i in 1:n.col) {
screen(screens[i])
plot(Colp[[i]], direction="downwards", show.tip.label=FALSE,xaxs="i", x.lim=c(0.5,0.5+col.lengths[i]), y.lim=-col.max_height+col.heights[i]+c(0,col.max_height))
}
}
screen(3)
par(mar=rep(0,4))
if (n.col == 1) {
plot(Rowp, direction="rightwards", show.tip.label=FALSE,yaxs="i", y.lim=yl)
} else {
screens <- split.screen( as.matrix(data.frame( left=0, right=1, bottom=cumsum(row.fraction)-row.fraction, top=cumsum(row.fraction))) )
for (i in 1:n.col) {
screen(screens[i])
plot(Rowp[[i]], direction="rightwards", show.tip.label=FALSE,yaxs="i", x.lim=c(0,row.max_height), y.lim=c(0.5,0.5+row.lengths[i]))
}
}
screen(4)
par(mar=rep(0,4), xpd=TRUE)
image((1:nrow(x))-0.5, (1:ncol(x))-0.5, x, xaxs="i", yaxs="i", axes=FALSE, xlab="",ylab="", breaks=breaks, col=col, ...)
screen(6)
par(mar=rep(0,4))
plot(NA, axes=FALSE, ylab="", xlab="", yaxs="i", xlim=c(0,2), ylim=yl)
text(rep(0,nrow(x)),1:nrow(x),row.tip, pos=4, cex=cexCol)
screen(5)
par(mar=rep(0,4))
plot(NA, axes=FALSE, ylab="", xlab="", xaxs="i", ylim=c(0,2), xlim=xl)
text(1:ncol(x),rep(2,ncol(x)),col.tip, srt=90, adj=c(1,0.5), cex=cexRow)
screen(1)
par(mar = c(2, 2, 1, 1), cex = 0.75)
symkey <- T
tmpbreaks <- breaks
if (symkey) {
max.raw <- max(abs(c(x, breaks)), na.rm = TRUE)
min.raw <- -max.raw
tmpbreaks[1] <- -max(abs(x), na.rm = TRUE)
tmpbreaks[length(tmpbreaks)] <- max(abs(x), na.rm = TRUE)
} else {
min.raw <- min(x, na.rm = TRUE)
max.raw <- max(x, na.rm = TRUE)
}
z <- seq(min.raw, max.raw, length = length(col))
image(z = matrix(z, ncol = 1), col = col, breaks = tmpbreaks,
xaxt = "n", yaxt = "n")
par(usr = c(0, 1, 0, 1))
lv <- pretty(breaks)
xv <- scale01(as.numeric(lv), min.raw, max.raw)
axis(1, at = xv, labels = lv)
h <- hist(x, plot = FALSE, breaks = breaks)
hx <- scale01(breaks, min.raw, max.raw)
hy <- c(h$counts, h$counts[length(h$counts)])
lines(hx, hy/max(hy) * 0.95, lwd = 1, type = "s",
col = denscol)
axis(2, at = pretty(hy)/max(hy) * 0.95, pretty(hy))
par(cex = 0.5)
mtext(side = 2, "Count", line = 2)
close.screen(all.screens = T)
}
tree <- read.tree(text = "(A:1,B:1);((C:1,D:2):2,E:1);((F:1,G:1,H:2):5,((I:1,J:2):2,K:1):1);", comment.char="")
N <- sum(unlist(lapply(tree, function(t) length(t$tip))))
set.seed(42)
m <- cor(matrix(rnorm(N*N), nrow=N))
rownames(m) <- colnames(m) <- LETTERS[1:N]
heatmap.phylo(m, tree, tree, col=bluered(10), breaks=seq(-1,1,length.out=11), respect=T)
This exact application of a heatmap is already implemented in the plot_heatmap function (based on ggplot2) in the phyloseq package, which is openly/freely developed on GitHub. Examples with complete code and results are included here:
http://joey711.github.io/phyloseq/plot_heatmap-examples
One caveat, and not what you are explicitly asking for here, but phyloseq::plot_heatmap does not overlay a hierarchical tree for either axis. There is a good reason not to base your axis ordering on hierarchical clustering -- and this is because of the way indices at the end of long branches can still be next to each other arbitrarily depending on how branches are rotated at the nodes. This point, and an alternative based on non-metric multidimensional scaling is explained further in an article about the NeatMap package, which is also written for R and uses ggplot2. This dimension-reduction (ordination) approach to ordering the indices in a heatmap is adapted for phylogenetic abundance data in phyloseq::plot_heatmap.
While my suggestion for phlyoseq::plot_heatmap would get you part of the way there, the powerful "ggtree" package can do this, or more, if representing data on trees is really what you are going for.
Some examples are shown on the top of the following ggtree documentation page:
http://www.bioconductor.org/packages/3.7/bioc/vignettes/ggtree/inst/doc/advanceTreeAnnotation.html
Note that I am not affiliated with ggtree dev at all. Just a fan of the project and what it can already do.
After communication with #plannapus, I've modified (just a few) the code to remove some extra xlab="" information on the above code.
Here you will find the code. You can see the commented lines having the extra code and now the new lines just erasing them.
Hope this can help new users like me! :)
heatmap.phylo <- function(x, Rowp, Colp, ...){
# x numeric matrix
# Rowp: phylogenetic tree (class phylo) to be used in rows
# Colp: phylogenetic tree (class phylo) to be used in columns
# ... additional arguments to be passed to image function
x <- x[Rowp$tip, Colp$tip]
xl <- c(0.5, ncol(x) + 0.5)
yl <- c(0.5, nrow(x) + 0.5)
layout(matrix(c(0,1,0,2,3,4,0,5,0),nrow = 3, byrow = TRUE),
width = c(1,3,1), height = c(1,3,1))
par(mar = rep(0,4))
# plot(Colp, direction = "downwards", show.tip.label = FALSE,
# xlab = "", ylab = "", xaxs = "i", x.lim = xl)
plot(Colp, direction = "downwards", show.tip.label = FALSE,
xaxs = "i", x.lim = xl)
par(mar = rep(0,4))
# plot(Rowp, direction = "rightwards", show.tip.label = FALSE,
# xlab = "", ylab = "", yaxs = "i", y.lim = yl)
plot(Rowp, direction = "rightwards", show.tip.label = FALSE,
yaxs = "i", y.lim = yl)
par(mar = rep(0,4), xpd = TRUE)
image((1:nrow(x)) - 0.5, (1:ncol(x)) - 0.5, x,
#xaxs = "i", yaxs = "i", axes = FALSE, xlab = "", ylab = "", ...)
xaxs = "i", yaxs = "i", axes = FALSE, ...)
par(mar = rep(0,4))
plot(NA, axes = FALSE, ylab = "", xlab = "", yaxs = "i", xlim = c(0,2), ylim = yl)
text(rep(0, nrow(x)), 1:nrow(x), Rowp$tip, pos = 4)
par(mar = rep(0,4))
plot(NA, axes = FALSE, ylab = "", xlab = "", xaxs = "i", ylim = c(0,2), xlim = xl)
text(1:ncol(x), rep(2, ncol(x)), Colp$tip, srt = 90, pos = 2)
}

Resources