When I try this code on Emacs SLIME, the apply function gives a different result. Isn't it supposed to give the same result? Why does it give a different result? Thanks.
CL-USER> (apply #'(lambda (n)
(cons n '(b a))) '(c))
(C B A)
CL-USER> (cons '(c) '(b a))
((C) B A)
cons takes an element and a list as arguments. So (cons 'x '(a b c d)) will return (x a b c d).
apply takes a function and a list of arguments -- but the arguments will not be passed to the function as a list! They will be split and passed individually:
(apply #'+ '(1 2 3))
6
(actually, it takes one function, several arguments, of which the last must be a list -- this list will be split and treated as "the rest of the arguments to the function". try, for example, (apply #'+ 5 1 '(1 2 3)), which will return 12)
Now to your code:
The last argument you passed to the apply function is '(c), a list with one element, c. Apply will treat it as a list of arguments, so the first argument you passed to your lambda-form is c.
In the second call, you passed '(c) as first argument to cons. This is a list, which was correctly included in the first place of the resulting list: ( (c) b a).
The second call would be equivalent to the first if you did
(cons 'c '(b a))
(c b a)
And the first call would be equivalent to the second if you did
(apply #'(lambda (n) (cons n '(b a))) '((c)))
((c) b a)
CL-USER 51 > (cons '(c) '(b a))
((C) B A)
CL-USER 52 > (apply #'(lambda (n)
(cons n '(b a)))
'(c))
(C B A)
Let's use FUNCALL:
CL-USER 53 > (funcall #'(lambda (n)
(cons n '(b a)))
'(c))
((C) B A)
See also what happens when we apply a two element list:
CL-USER 54 > (apply #'(lambda (n)
(cons n '(b a)))
'(c d))
Error: #<anonymous interpreted function 40600008E4> got 2 args, wanted 1.
There is a symmetry between &rest arguments in functions and apply.
(defun function-with-rest (arg1 &rest argn)
(list arg1 argn))
(function-with-rest 1) ; ==> (1 ())
(function-with-rest 1 2) ; ==> (1 (2))
(function-with-rest 1 2 3 4 5) ; ==> (1 (2 3 4 5))
Imagine we want to take arg1 and argn and use it the same way with a function of our choice in the same manner as function-with-rest. We double the first argument and sum the rest.
(defun double-first-and-sum (arg1 &rest argn)
(apply #'+ (* arg1 2) argn))
(double-first-and-sum 1 1) ; ==> 3
(double-first-and-sum 4 5 6 7) ; ==> 26
The arguments between the function and the list of "rest" arguments are additional arguments that are always first:
(apply #'+ 1 '(2 3 4)) ; ==> (+ 1 2 3 4)
(apply #'+ 1 2 3 '(4)) ; ==> (+ 1 2 3 4)
This is very handy since often we want to add more arguments than we are passed (or else we could just have used the function apply is using in the first place. Here is something called zip:
(defun zip (&rest args)
(apply #'mapcar #'list args))
So what happens when you call it like this: (zip '(a b c) '(1 2 3))? Well args will be ((a b c) (1 2 3)) and the apply will make it become (mapcar #'list '(a b c) '(1 2 3)) which will result in ((a 1) (b 2) (c 3)). Do you see the symmetry?
Thus you could in your example you could have done this:
(apply #'(lambda (&rest n)
(cons n '(b a))) '(c))
;==> ((c) b a)
(apply #'(lambda (&rest n)
(cons n '(b a))) '(c d e))
;==> ((c d e) b a)
Related
So I have this line of code:
(foldl cons '() '(1 2 3 4))
And the output I get when I run it is this:
'(4 3 2 1)
Can you please explain to me why I don’t get '(1 2 3 4) instead?
I read the documentation but I am still a bit confused about how foldl works. Also if I wanted to define foldl how would I specify in Racket that the function can take a variable amount of lists as arguments?
Thanks!
Yes. By the definition of left fold, the combining function is called with the first element of the list and the accumulated result so far, and the result of that call is passed (as the new, updated accumulated result so far) to the recursive invocation of foldl with the same combining function and the rest of the list:
(foldl cons '() '(1 2 3))
=
(foldl cons (cons 1 '()) '(2 3))
=
(foldl cons (cons 2 (cons 1 '())) '(3))
=
(foldl cons (cons 3 (cons 2 (cons 1 '()))) '())
=
(cons 3 (cons 2 (cons 1 '())))
And when the list is empty, the accumulated result so far is returned as the final result.
To your second question, variadic functions in Scheme are specified with the dot . in the argument list, like so:
(define (fold-left f acc . lists)
(if (null? (first lists)) ;; assume all have same length
acc
(apply fold-left ;; recursive call
f
(apply f (append (map first lists) ;; combine first elts
(list acc))) ;; with result so far
(map rest lists)))) ;; the rests of lists
Indeed,
(fold-left (lambda (a b result)
(* result (- a b)))
1
'(1 2 3)
'(4 5 6))
returns -27.
I was trying to make a recursive function to split a list into two lists according the number of elements one wants.
Ex:
(split 3 '(1 3 5 7 9)) ((1 3 5) (7 9))
(split 7 '(1 3 5 7 9)) ((1 3 5 7 9) NIL)
(split 0 '(1 3 5 7 9)) (NIL (1 3 5 7 9))
My code is like this:
(defun split (e L)
(cond ((eql e 0) '(() L))
((> e 0) (cons (car L) (car (split (- e 1) (cdr L))))))))
I don't find a way to join the first list elements and return the second list.
Tail recursive solution
(defun split (n l &optional (acc-l '()))
(cond ((null l) (list (reverse acc-l) ()))
((>= 0 n) (list (reverse acc-l) l))
(t (split (1- n) (cdr l) (cons (car l) acc-l)))))
Improved version
(in this version, it is ensured that acc-l is at the beginning '()):
(defun split (n l)
(labels ((inner-split (n l &optional (acc-l '()))
(cond ((null l) (list (reverse acc-l) ()))
((= 0 n) (list (reverse acc-l) l))
(t (inner-split (1- n) (cdr l) (cons (car l) acc-l))))))
(inner-split n l)))
Test it:
(split 3 '(1 2 3 4 5 6 7))
;; returns: ((1 2 3) (4 5 6 7))
(split 0 '(1 2 3 4 5 6 7))
;; returns: (NIL (1 2 3 4 5 6 7))
(split 7 '(1 2 3 4 5 6 7))
;; returns ((1 2 3 4 5 6 7) NIL)
(split 9 '(1 2 3 4 5 6 7))
;; returns ((1 2 3 4 5 6 7) NIL)
(split -3 '(1 2 3 4 5 6 7))
;; returns (NIL (1 2 3 4 5 6 7))
In the improved version, the recursive function is placed one level deeper (kind of encapsulation) by using labels (kind of let which allows definition of local functions but in a way that they are allowed to call themselves - so it allows recursive local functions).
How I came to the solution:
Somehow it is clear, that the first list in the result must result from consing one element after another from the beginning of l in successive order. However, consing adds an element to an existing list at its beginning and not its end.
So, successively consing the car of the list will lead to a reversed order.
Thus, it is clear that in the last step, when the first list is returned, it hast to be reversed. The second list is simply (cdr l) of the last step so can be added to the result in the last step, when the result is returned.
So I thought, it is good to accumulate the first list into (acc-l) - the accumulator is mostly the last element in the argument list of tail-recursive functions, the components of the first list. I called it acc-l - accumulator-list.
When writing a recursive function, one begins the cond part with the trivial cases. If the inputs are a number and a list, the most trivial cases - and the last steps of the recursion, are the cases, when
the list is empty (equal l '()) ---> (null l)
and the number is zero ----> (= n 0) - actually (zerop n). But later I changed it to (>= n 0) to catch also the cases that a negative number is given as input.
(Thus very often recursive cond parts have null or zerop in their conditions.)
When the list l is empty, then the two lists have to be returned - while the second list is an empty list and the first list is - unintuitively - the reversed acc-l.
You have to build them with (list ) since the list arguments get evaluated shortly before return (in contrast to quote = '(...) where the result cannot be evaluated to sth in the last step.)
When n is zero (and later: when n is negative) then nothing is to do than to return l as the second list and what have been accumulated for the first list until now - but in reverse order.
In all other cases (t ...), the car of the list l is consed to the list which was accumulated until now (for the first list): (cons (car l) acc-l) and this I give as the accumulator list (acc-l) to split and the rest of the list as the new list in this call (cdr l) and (1- n). This decrementation in the recursive call is very typical for recursive function definitions.
By that, we have covered all possibilities for one step in the recursion.
And that makes recursion so powerful: conquer all possibilities in ONE step - and then you have defined how to handle nearly infinitely many cases.
Non-tail-recursive solution
(inspired by Dan Robertson's solution - Thank you Dan! Especially his solution with destructuring-bind I liked.)
(defun split (n l)
(cond ((null l) (list '() '()))
((>= 0 n) (list '() l))
(t (destructuring-bind (left right) (split (1- n) (cdr l))
(list (cons (car l) left) right)))))
And a solution with only very elementary functions (only null, list, >=, let, t, cons, car, cdr, cadr)
(defun split (n l)
(cond ((null l) (list '() '()))
((>= 0 n) (list '() l))
(t (let ((res (split (1- n) (cdr l))))
(let ((left-list (car res))
(right-list (cadr res)))
(list (cons (car l) left-list) right-list))))))
Remember: split returns a list of two lists.
(defun split (e L)
(cond ((eql e 0)
'(() L)) ; you want to call the function LIST
; so that the value of L is in the list,
; and not the symbol L itself
((> e 0)
; now you want to return a list of two lists.
; thus it probably is a good idea to call the function LIST
; the first sublist is made of the first element of L
; and the first sublist of the result of SPLIT
; the second sublist is made of the second sublist
; of the result of SPLIT
(cons (car L)
(car (split (- e 1)
(cdr L)))))))
Well let’s try to derive the recursion we should be doing.
(split 0 l) = (list () l)
So that’s our base case. Now we know
(split 1 (cons a b)) = (list (list a) b)
But we think a bit and we’re building up the first argument on the left and the way to build up lists that way is with CONS so we write down
(split 1 (cons a b)) = (list (cons a ()) b)
And then we think a bit and we think about what (split 0 l) is and we can write down for n>=1:
(split n+1 (cons a b)) = (list (cons a l1) l2) where (split n b) = (list l1 l2)
So let’s write that down in Lisp:
(defun split (n list)
(ecase (signum n)
(0 (list nil list))
(1 (if (cdr list)
(destructuring-bind (left right) (split (1- n) (cdr list))
(list (cons (car list) left) right))
(list nil nil)))))
The most idiomatic solution would be something like:
(defun split (n list)
(etypecase n
((eql 0) (list nil list))
(unsigned-integer
(loop repeat n for (x . r) on list
collect x into left
finally (return (list left r))))))
In order to understand functional programing, please help me to write a function that output nth element of a list,
Allowed command:
define lambda cond else empty empty? first rest cons list
list? = equal? and or not + - * / < <= > >=
Sample output:
(fourth-element '(a b c d e)) => d
(fourth-element '(x (y z) w h j)) => h
(fourth-element '((a b) (c d) (e f) (g h) (i j))) => (list 'g 'h)
or ‘(g h)
(fourth-element '(a b c)) => empty
I could write this in python, but I am not family with racket syntax,
def element(lst, x=0):
counter = x;
if (counter >= 3):
return lst[0]
else:
return element(lst[1:],x+1)
a = [1,2,3,4,5,6]
print(element(a))
The Output is 4
Comparing with code above in python. What is equivalent behavior in function that create local variable counter. What is "keyword" for return
It looks like you came up with an answer of your own. Nice work! I would recommend a more generic nth procedure that takes a counter as an argument. This allows you to get any element in the input list
(define (nth lst counter)
(cond ((null? lst) (error 'nth "index out of bounds"))
((= counter 0) (first lst))
(else (nth (rest lst) (- counter 1)))))
Now if you want a procedure that only returns the 4th element, we create a new procedure which specializes the generic nth
(define (fourth-element lst)
(nth lst 3))
That's it. Now we test them out with your inputs
(define a `(1 2 3 (4 5) 7))
(define b `(1 2 3))
(define c `((a b)(c d)(e f)(g h)(i j)))
(define d `(a b c))
(fourth-element a) ; '(4 5)
(fourth-element b) ; nth: index out of bounds
(fourth-element c) ; '(g h)
(fourth-element d) ; nth: index out of bounds
Note, when the counter goes out of bounds, I chose to raise an error instead of returning a value ("empty") like your program does. Returning a value makes it impossible to know whether you actually found a value in the list, or if the default was returned. In the example below, notice how your procedure cannot differentiate the two inputs
(define d `(a b c))
(define e `(a b c ,"empty"))
; your implementation
(fourth-element e) ; "empty"
(fourth-element d) ; "empty"
; my implementation
(fourth-element e) ; "empty"
(fourth-element d) ; error: nth: index out of bounds
If you don't want to throw an error, there's another way we can encode nth. Instead of returning nth element, we can return the nth pair whose head contains the element in question.
Below, nth always returns a list. If the list is empty, no element was found. Otherwise, the nth element is the first element in the result.
(define (nth lst counter)
(cond ((null? lst) '())
((= counter 0) lst)
(else (nth (rest lst) (- counter 1)))))
(define (fourth-element lst)
(nth lst 3))
(define a `(1 2 3 (4 5) 7))
(define b `(1 2 3))
(define c `((a b)(c d)(e f)(g h)(i j)))
(define d `(a b c))
(define e `(a b c ,"empty"))
(fourth-element a) ; '((4 5) 7)
(fourth-element b) ; '()
(fourth-element c) ; '((g h) (i j))
(fourth-element d) ; '()
(fourth-element e) ; '("empty")
Hopefully this gets you to start thinking about domain (procedure input type) and codomain (procedure output type).
In general, you want to design procedures that have natural descriptions like:
" nth takes a list and a number and always returns a list" (best)
" nth takes a list and a number and returns an element of the list or raises an exception if the element is not found" (good, but now you must handle errors)
Avoid procedures like
" nth takes a list and a number and returns an element of the list or a string literal "empty" if the element is not found" (unclear codomain)
By thinking about your procedure's domain and codomain, you have awareness of how your function will work as it's inserted in various parts of your program. Using many procedures with poorly-defined domains lead to disastrous spaghetti code. Conversely, well-defined procedures can be assembled like building blocks with little (or no) glue code necessary.
Here is how to write it in Python:
def nth(lst, idx=0):
if (len(lst) == 0):
return "empty"
elif (idx == 0):
return lst[0]
else:
return nth(lst[1:], idx - 1)
nth([1,2,3], 1)
# ==> 2
def fourth-element(lst):
return nth(lst, 4)
Same in Scheme/Racket:
(define (nth lst idx)
(cond ((empty? lst) empty) ; more effiecent than (= (length lst) 0)
((= idx 0) (first lst))
(else (nth (rest lst) (- idx 1))))
(nth '(1 2 3) 1)
; ==> 2
(define (fourth-element lst)
(nth lst 4))
There is no keyword for return. Every form returns the last evaluated code:
(if (< 4 x)
(bar x)
(begin
(display "print this")
(foo x)))
This if returns either the result of (bar x) or it prints "print this" then returns the result of (foo x). The reason is that for the two outcomes of the if they are the tail expressions.
(define (test x)
(+ x 5)
(- x 3))
This function has two expressions. The first is dead code since it has no side effect and since it's not a tail expression, but the (- x 3) is what this function returns.
(define (test x y)
(define xs (square x))
(define ys (square y))
(sqrt (+ xs ys)))
This has 3 expressions. The first two has side effects that it binds two local variables while the third uses this to compute the returned value.
(define a `(1 2 3 (4 5) 7))
(define b `(1 2 3))
(define c `((a b)(c d)(e f)(g h)(i j)))
(define d `(a b c))
(define (my-lst-ref lst counter)
(cond[(>= counter 3) (first lst)]
[else (my-lst-ref (rest lst)(+ counter 1))]
)
)
(define (fourth-element lst)
(cond[(>= (list-length lst) 4) (my-lst-ref lst 0)]
[else "empty"]))
(fourth-element a)
(fourth-element c)
(fourth-element d)
Output:
(list 4 5)
(list 'g 'h)
"empty"
I need a function that concatenates multiple values into (simple) vector, similar to (concatenate ). However, unlike concatenate, it should be able to handle arguments that are not vectors or sequences.
I.e. it should work like this:
(concat #(1 2) 3) => #(1 2 3)
(concat 1 2 3) => #(1 2 3)
(concat 1 #(2 3 4)) => #(1 2 3 4)
(concat #(1 2) 2 #(3 4 5)) => #(1 2 3 4 5)
How can I do this? I think I've forgotten some trivial lisp construct that makes it possible.
As far as I can tell, concatenate can't do it. and I'm not quite sure how to use make it with macro (there's ,# consturct that inserts list into resulting lisp form, but but I'm not quite sure how to distinguish between non-sequences and sequences in this case).
The reduce approach in the other reply is quadratic in time.
Here is a linear solution:
(defun my-concatenate (type &rest args)
(apply #'concatenate type
(mapcar (lambda (a) (if (typep a 'sequence) a (list a)))
args)))
Since we can compute the length of the sequence, we can allocate the result sequence and then copy the elements into it.
(defun concat (type &rest items)
(let* ((len (loop for e in items
if (typep e 'sequence)
sum (length e)
else sum 1))
(seq (make-sequence type len)))
(loop with pos = 0
for e in items
if (typep e 'sequence)
do (progn
(setf (subseq seq pos) e)
(incf pos (length e)))
else
do (progn
(setf (elt seq pos) e)
(incf pos)))
seq))
CL-USER 17 > (concat 'string "abc" #\1 "def" #\2)
"abc1def2"
Above works well for vectors. A version for lists is left as an exercise.
defun my-concatenate (type &rest vectors)
(reduce (lambda (a b)
(concatenate
type
(if (typep a 'sequence) a (list a))
(if (typep b 'sequence) b (list b))))
vectors))
You can use reduce with a little modification of #'concatenate on your arguments. If one of the arguments is not a sequence, just transform it into a list (concatenate works even with mixed arguments of simple-vectors and lists).
CL-USER> (my-concatenate 'list #(1 2 3) 3 #(3 5))
(1 2 3 3 3 5)
CL-USER> (my-concatenate 'simple-vector #(1 2 3) 3 #(3 5))
#(1 2 3 3 3 5)
CL-USER> (my-concatenate 'simple-vector 1 #(2 3) (list 4 5))
#(1 2 3 4 5)
EDIT: well, you should probably accept the other answer.
I'm trying to solve a problem in Scheme which is demanding me to use a nested loop or a nested recursion.
e.g. I have two lists which I have to check a condition on their Cartesian product.
What is the best way to approach these types of problems? Any pointers on how to simplify these types of functions?
I'll elaborate a bit, since my intent might not be clear enough.
A regular recursive function might look like this:
(define (factorial n)
(factorial-impl n 1))
(define (factorial-impl n t)
(if (eq? n 0)
t
(factorial-impl (- n 1) (* t n))))
Trying to write a similar function but with nested recursion introduces a new level of complexity to the code, and I was wondering what the basic pattern is for these types of functions, as it can get very ugly, very fast.
As a specific example, I'm looking for the easiest way to visit all the items in a cartesian product of two lists.
In Scheme,
The "map" function is often handy for computing one list based on another.
In fact, in scheme, map takes an "n-argument" function and "n" lists and calls the
function for each corresponding element of each list:
> (map * '(3 4 5) '(1 2 3))
(3 8 15)
But a very natural addition to this would be a "cartesian-map" function, which would call your "n-argument" function with all of the different ways of picking one element from each list. It took me a while to figure out exactly how to do it, but here you go:
; curry takes:
; * a p-argument function AND
; * n actual arguments,
; and returns a function requiring only (p-n) arguments
; where the first "n" arguments are already bound. A simple
; example
; (define add1 (curry + 1))
; (add1 3)
; => 4
; Many other languages implicitly "curry" whenever you call
; a function with not enough arguments.
(define curry
(lambda (f . c) (lambda x (apply f (append c x)))))
; take a list of tuples and an element, return another list
; with that element stitched on to each of the tuples:
; e.g.
; > (stitch '(1 2 3) 4)
; ((4 . 1) (4 . 2) (4 . 3))
(define stitch
(lambda (tuples element)
(map (curry cons element) tuples)))
; Flatten takes a list of lists and produces a single list
; e.g.
; > (flatten '((1 2) (3 4)))
; (1 2 3 4)
(define flatten
(curry apply append))
; cartesian takes two lists and returns their cartesian product
; e.g.
; > (cartesian '(1 2 3) '(4 5))
; ((1 . 4) (1 . 5) (2 . 4) (2 . 5) (3 . 4) (3 . 5))
(define cartesian
(lambda (l1 l2)
(flatten (map (curry stitch l2) l1))))
; cartesian-lists takes a list of lists
; and returns a single list containing the cartesian product of all of the lists.
; We start with a list containing a single 'nil', so that we create a
; "list of lists" rather than a list of "tuples".
; The other interesting function we use here is "fold-right" (sometimes called
; "foldr" or "reduce" in other implementations). It can be used
; to collapse a list from right to left using some binary operation and an
; initial value.
; e.g.
; (fold-right cons '() '(1 2 3))
; is equivalent to
; ((cons 1 (cons 2 (cons 3 '())))
; In our case, we have a list of lists, and our binary operation is to get the
; "cartesian product" between each list.
(define cartesian-lists
(lambda (lists)
(fold-right cartesian '(()) lists)))
; cartesian-map takes a n-argument function and n lists
; and returns a single list containing the result of calling that
; n-argument function for each combination of elements in the list:
; > (cartesian-map list '(a b) '(c d e) '(f g))
; ((a c f) (a c g) (a d f) (a d g) (a e f) (a e g) (b c f)
; (b c g) (b d f) (b d g) (b e f) (b e g))
(define cartesian-map
(lambda (f . lists)
(map (curry apply f) (cartesian-lists lists))))
Without all the comments and some more compact function definition syntax we have:
(define (curry f . c) (lambda x (apply f (append c x))))
(define (stitch tuples element)
(map (curry cons element) tuples))
(define flatten (curry apply append))
(define (cartesian l1 l2)
(flatten (map (curry stitch l2) l1)))
(define cartesian-lists (curry fold-right cartesian '(()))))
(define (cartesian-map f . lists)
(map (curry apply f) (cartesian-lists lists)))
I thought the above was reasonably "elegant"... until someone showed me the equivalent Haskell definition:
cartes f (a:b:[]) = [ f x y | x <- a , y <- b ]
cartes f (a:b:bs) = cartes f ([ f x y | x <- a , y <- b ]:bs)
2 lines!!!
I am not so confident on the efficiency of my implementation - particularly the "flatten" step was quick to write but could end up calling "append"
with a very large number of lists, which may or may not be very efficient on some Scheme
implementations.
For ultimate practicality/usefulness you would want a version that could take "lazily evaluated" lists/streams/iterator rather than fully specified lists.... a "cartesian-map-stream" function if you like, that would then return a "stream" of the results... but this depends on the context (I am thinking of the "stream" concept as introduced in SICP)... and would come for free from the Haskell version thanks to it's lazy evaluation.
In general, in Scheme, if you wanted to "break out" of the looping at some point you could also use a continuation (like throwing an exception but it is accepted practise in Scheme for control flow).
I had fun writing this!
I'm not sure I see what the problem is.
I believe the main thing you have to understand in functional programming is : build complicated functions by composing several simpler functions.
For instance, in this case:
;compute the list of the (x,y) for y in l
(define (pairs x l)
(define (aux accu x l)
(if (null? l)
accu
(let ((y (car l))
(tail (cdr l)))
(aux (cons (cons x y) accu) x tail))))
(aux '() x l))
(define (cartesian-product l m)
(define (aux accu l)
(if (null? l)
accu
(let ((x (car l))
(tail (cdr l)))
(aux (append (pairs x m) accu) tail))))
(aux '() l))
You identify the different steps: to get the cartesian product, if you "loop" over the first list, you're going to have to be able to compute the list of the (x,y), for y in the second list.
There are some good answers here already, but for simple nested functions (like your tail-recursive factorial), I prefer a named let:
(define factorial
(lambda (n)
(let factorial-impl ([n n] [t 1])
(if (eq? n 0)
t
(factorial-impl (- n 1) (* t n))))))