I'm working with data that looks similar to this:
cat value n
1 100 18
2 0 19
3 -100 15
4 100 13
5 0 17
6 -100 18
In the real data, there are many cats and value can be any number between -100 and 100 (no NA).
What I want to do is to calculate the mean of value based on terciles defined by n
So, for example, since sum(n)=100 what I want to do is to get n's as close as possible to 33 and calculate the mean of value. So for the first tercile, 18 isn't quite 33, so I need to take 15 values from cat=2. So the mean for the first tercile should be (100*18+0*15)/(18+15). The second tercile would be the remaining ns from cat=2, then as many as are needed to get to 33: (0*4+-100*15+100*13+0*1)/(4+15+13+1). Similar for the last tercile.
I got started writing this, but ended up with lots of nasty for loops and if statements. I'm hoping that you see an easier way to deal with this than I do. Thanks in advance!
A solution with data.table:
setDT(df)[rep(1:.N,n)
][,indx:=c(rep("a",33),rep("b",33),rep("c",34))
][,.(mean_val_indx=mean(value)),by=indx]
this gives:
indx mean_val_indx
1: a 54.545455
2: b -6.060606
3: c -52.941176
Which are the means of value for the three parts of the data.
Broken down in the intermediate steps:
1: replice the rows according n
setDT(df)[rep(1:.N,n)]
this gives (shortened):
cat value n
1: 1 100 18
2: 1 100 18
....
17: 1 100 18
18: 1 100 18
19: 2 0 19
20: 2 0 19
....
36: 2 0 19
37: 2 0 19
38: 3 -100 15
....
99: 6 -100 18
100: 6 -100 18
2: create an index with [,indx:=c(rep("a",33),rep("b",33),rep("c",34))]
setDT(df)[rep(1:.N,n)
][,indx:=c(rep("a",33),rep("b",33),rep("c",34))]
this gives:
> dt
cat value n indx
1: 1 100 18 a
2: 1 100 18 a
....
17: 1 100 18 a
18: 1 100 18 a
19: 2 0 19 a
20: 2 0 19 a
....
32: 2 0 19 a
33: 2 0 19 a
34: 2 0 19 b
35: 2 0 19 b
....
99: 6 -100 18 c
100: 6 -100 18 c
3: summarise value by indx with [,.(mean_val_indx=mean(value)),by=indx]
You could try something like this, data being your example dataframe:
longData<-unlist(apply(data[,c("value","n")],1,function(x){
rep(x["value"],x["n"])
}))
aggregate(longData,list(cut(seq_along(longData),breaks=3,right=FALSE)),mean)
longData will be a vector of length 100 with, using your example, 18 repetitions of -100, 19 repetitions of 0 etc.
The cut in the aggregate will divide longData into three groups, and the mean of each group will be calculated.
If already the data is very long repetition by "n" is perhaps unwanted.
The following solution doesn't do this. Moreover, 1/3 of the sum of the
"n"-values is not rounded to the nearest integer.
"i" is the vector of row numbers where terciles end. Since it is possible
that several terciles end at the same row, those row numbers are replicated.
The result is the vector "k".
For each index "j" the cumulative sum of "data$value"*"data$n" up to "k[j]"
covers "ms[k[j]]" terciles, so "ms[j]-j" terciles have to be subtracted
to get the cumulative sum up to the "j"th tercile.
m <- 3
sn <- sum(data$n)
ms <- m * cumsum(data$n) / sn
d <- diff(c(0,floor(ms)))
i <- which(d>0)
k <- rep(i,d[i])
vn <- data$value * data$n
sums <- cumsum(vn)[k] - (ms[k]-(1:m))*data$value[k]*sn/m
means <- m*diff(c(0,sums))/sn
The means of the terciles are:
> means
[1] 54 -6 -54
In this example "i" is equal to "k". But if terciles are replaced by deciles,
i.e. "m" is not 3 but 10, they are distinct:
> m
[1] 10
> i
[1] 1 2 3 4 5 6
> k
[1] 1 2 2 3 3 4 5 5 6 6
> means
[1] 100 80 0 -30 -100 60 50 0 -80 -100
I compared the speed of the 4 answers, using out small example with 8 rows:
> ##### "longData"-Answer #####
>
> system.time( for ( i in 1:1000 ) { A1 <- f1(data) } )
User System verstrichen
3.48 0.00 3.49
> ##### "sapply"-Answer #####
>
> system.time( for ( i in 1:1000 ) { A2 <- f2(data) } )
User System verstrichen
1.00 0.00 0.99
> ##### "data.table"Answer #####
>
> system.time( for ( i in 1:1000 ) { A3 <- f3(data) } )
User System verstrichen
4.73 0.00 4.79
> ##### this Answer #####
>
> system.time( for ( i in 1:1000 ) { A4 <- f4(data) } )
User System verstrichen
0.43 0.00 0.44
The "sapply"-Answer is even false:
> A1
Group.1 x
1 [0.901,34) 54.545455
2 [34,67) -6.060606
3 [67,100) -52.941176
> A2
(0,33] (33,67] (67,100]
-100.00000 0.00000 93.93939
> A3
indx mean_val_indx
1: a 54.545455
2: b -6.060606
3: c -52.941176
> A4
[1] 54 -6 -54
>
This is basically the same as NicE although perhaps useful as a different way fo assembling the rep and cutting operations:
sapply(split( sort(unlist( mapply(rep, res$value, res$n) )),
cut(seq(sum(res$n)), breaks=c(0,33,67,100) )),
mean)
(0,33] (33,67] (67,100]
-100.00000 0.00000 93.93939
Related
I want to calculate the per cent change in my dataframe using the first row as the reference. For example my dataframe
Set rate field
A 3 10
B 2 17
C 5 4
Using row A as the reference, I want to calculate the percentage change from row A to every other row for all columns in the dataframe.
which will result in
Set rate field
A 3 10
B -33 70
C 66.66 -60
or
Set rate field pct_rate pct-field
A 3 10 0 0
B 2 17 -33 70
C 5 4 66.66 -60
My code:
z %>%
mutate(pct_rate = (rate - lag(rate)/ rate ) * 100)
which doesn't give me the desired result
df <- fread("Set rate field
A 3 10
B 2 17
C 5 4")
Soltuion using dplyr: We can use dplyr's first function to refer to the first element of a vector (your attempt with lag is very close to this solution). Also I used first(rate) in the denominator to calculate the percentage difference to get the numbers in your example...
library(dplyr)
df %>%
mutate(pct_rate = (rate - first(rate)) / first(rate) * 100,
pct_field = (field - first(field)) / first(field) * 100)
Returns:
Set rate field pct_rate pct_field
1: A 3 10 0.00000 0
2: B 2 17 -33.33333 70
3: C 5 4 66.66667 -60
You can use z$rate[1] or z$field[1] to get the first element and make than the calculations with all values.
z$pct_rate <- 100 * (z$rate - z$rate[1]) / z$rate[1]
z$pct_field <- 100 * (z$field - z$field[1]) / z$field[1]
z
# Set rate field pct_rate pct_field
#1 A 3 10 0.00000 0
#2 B 2 17 -33.33333 70
#3 C 5 4 66.66667 -60
or for many columns:
rbind(z[1,], do.call(cbind.data.frame, c(z[1],
lapply(z[-1], function(x) 100 * (x - x[1]) / x[1])))[-1,])
# Set rate field
#1 A 3.00000 10
#2 B -33.33333 70
#3 C 66.66667 -60
I have a data.table for which I want to add columns of random binomial numbers based on one column as number of trials and multiple probabilities based on other columns:
require(data.table)
DT = data.table(
ID = letters[sample.int(26,10, replace = T)],
Quantity=as.integer(100*runif(10))
)
prob.vecs <- LETTERS[1:5]
DT[,(prob.vecs):=0]
set.seed(123)
DT[,(prob.vecs):=lapply(.SD, function(x){runif(.N,0,0.2)}), .SDcols=prob.vecs]
DT
ID Quantity A B C D E
1: b 66 0.05751550 0.191366669 0.17790786 0.192604847 0.02856000
2: l 9 0.15766103 0.090666831 0.13856068 0.180459809 0.08290927
3: u 38 0.08179538 0.135514127 0.12810136 0.138141056 0.08274487
4: d 27 0.17660348 0.114526680 0.19885396 0.159093484 0.07376909
5: o 81 0.18809346 0.020584937 0.13114116 0.004922737 0.03048895
6: f 44 0.00911130 0.179964994 0.14170609 0.095559194 0.02776121
7: d 81 0.10562110 0.049217547 0.10881320 0.151691908 0.04660682
8: t 81 0.17848381 0.008411907 0.11882840 0.043281587 0.09319249
9: x 79 0.11028700 0.065584144 0.05783195 0.063636202 0.05319453
10: j 43 0.09132295 0.190900730 0.02942273 0.046325157 0.17156554
Now I want to add five columns Quantity_A Quantity_B Quantity_C Quantity_D Quantity_E
which apply the rbinom with the correspoding probability and quantity from the second column.
So for example the first entry for Quantity_A would be:
set.seed(741)
sum(rbinom(66,1,0.05751550))
> 2
This problem seems very similar to this post: How do I pass column-specific arguments to lapply in data.table .SD? but I cannot seem to make it work. My try:
DT[,(paste0("Quantity_", prob.vecs)):= mapply(function(x, Quantity){sum(rbinom(Quantity, 1 , x))}, .SD), .SDcols = prob.vecs]
Error in rbinom(Quantity, 1, x) :
argument "Quantity" is missing, with no default
Any ideas?
I seemed to have found a work-around, though I am not quite sure why this works (probably has something to do with the function rbinom not beeing vectorized in both arguments):
first define an index:
DT[,Index:=.I]
and then do it by index:
DT[,(paste0("Quantity_", prob.vecs)):= lapply(.SD,function(x){sum(rbinom(Quantity, 1 , x))}), .SDcols = prob.vecs, by=Index]
set.seed(789)
ID Quantity A B C D E Index Quantity_A Quantity_B Quantity_C Quantity_D Quantity_E
1: c 37 0.05751550 0.191366669 0.17790786 0.192604847 0.02856000 1 0 4 7 8 0
2: c 51 0.15766103 0.090666831 0.13856068 0.180459809 0.08290927 2 3 5 9 19 3
3: r 7 0.08179538 0.135514127 0.12810136 0.138141056 0.08274487 3 0 0 2 2 0
4: v 53 0.17660348 0.114526680 0.19885396 0.159093484 0.07376909 4 8 4 16 12 3
5: d 96 0.18809346 0.020584937 0.13114116 0.004922737 0.03048895 5 17 3 12 0 4
6: u 52 0.00911130 0.179964994 0.14170609 0.095559194 0.02776121 6 1 3 8 6 0
7: m 43 0.10562110 0.049217547 0.10881320 0.151691908 0.04660682 7 6 1 7 6 2
8: z 3 0.17848381 0.008411907 0.11882840 0.043281587 0.09319249 8 1 0 2 1 1
9: m 3 0.11028700 0.065584144 0.05783195 0.063636202 0.05319453 9 1 0 0 0 0
10: o 4 0.09132295 0.190900730 0.02942273 0.046325157 0.17156554 10 0 0 0 0 0
numbers look about right to me
If someone finds a solution without the index would still be appreciated.
I would like to do some calculations with the following dataframe. There are some values in specific cells of a column, and I would like to have them replicated based on a second column value, and store these in a new, third column:
x <- c ("1", "2","3", "4")
z <- (rep(x,5))
batch <- sort(z)
NDF <- rnorm(20, 10, 1); NDF <- signif (NDF, digits =3)
Fibre_analysis <- data.frame(batch, NDF)
Fibre_analysis$NDF[[1]] <- 10
Fibre_analysis$NDF[[6]] <- 100
Fibre_analysis$NDF[[11]] <- 1000
Fibre_analysis$NDF[[16]] <- 10000
This is the table that I would like:
batch NDF NEW_column
1 1 10.00 10
2 1 10.80 10
3 1 9.44 10
4 1 10.30 10
5 1 11.60 10
6 2 100.00 100
7 2 8.26 100
8 2 9.15 100
9 2 9.40 100
10 2 8.53 100
11 3 1000.00 1000
12 3 9.41 1000
13 3 9.20 1000
14 3 10.30 1000
15 3 9.32 1000
16 4 10000.00 10000
17 4 11.20 10000
18 4 7.33 10000
19 4 9.34 10000
20 4 11.00 10000
I would like this to create a new column in the dataframe, with absolute cell values from $NDFthat have to change for each value of $batch.
Because I need to use this process more than once I created the following function:
batch_Function <- function (x,y){
ifelse (x =="1", y[[1]],
ifelse (x =="2", y[[6]],
ifelse (x =="3", y[[11]],
y[[16]] )))
print (y)
}
when I call the function:
Fibre_analysis$NEW_column <- batch_Function ( Fibre_analysis$batch , Fibre_analysis$NDF )
I expect $NEW_column to look like this:
x <- c(10,100,1000,10000)
NEW_column <- rep(x, each=5)
whereas instead it is the exact same copy of the $NDF.
The only necessary change is to drop print(y) as it is not allowing to return the actual result:
batch_Function <- function (x, y) {
ifelse (x =="1", y[[1]],
ifelse (x =="2", y[[6]],
ifelse (x =="3", y[[11]],
y[[16]] )))
}
batch_Function (Fibre_analysis$batch , Fibre_analysis$NDF )
# [1] 10 10 10 10 10 100 100 100 100 100 1000 1000 1000 1000
# [15] 1000 10000 10000 10000 10000 10000
In case you still want print(y), you may put it at the beginning of batch_Function.
I have a data.table that looks like this:
library(data.table)
DT <- data.table(A=1:20, B=1:20*10, C=1:20*100)
DT
A B C
1: 1 10 100
2: 2 20 200
3: 3 30 300
4: 4 40 400
5: 5 50 500
...
20: 20 200 2000
I want to be able to calculate a new column "R" that has the first value as
DT$R[1]<-tanh(DT$B[1]/400000)
, and then I want to use the first row of column R to help calculate the next row value of G.
DT$R[2] <- 0.5*tanh(DT$B[2]/400000) + DT$R[1]*0.6
DT$R[3] <- 0.5*tanh(DT$B[3]/400000) + DT$R[2]*0.6
DT$R[4] <- 0.5*tanh(DT$B[4]/400000) + DT$R[3]*0.6
This will then look a bit like this
A B C R
1: 1 10 100 2.5e-05
2: 2 20 200 4e-05
3: 3 30 300 6.15e-05
4: 4 40 400 8.69e-05
5: 5 50 500 0.00011464
...
20: 20 200 2000 0.0005781274
Any ideas on this would be made?
Is this what you are looking for ?
DT <- data.table(A=1:20, B=1:20*10, C=1:20*100)
DT$R = 0
DT$R[1]<-tanh(DT$B[1]/400000)
for(i in 2:nrow(DT)) {
DT$R[i] <- 0.5*tanh(DT$B[i]/400000) + DT$R[i-1]*0.6
}
I have a data frame with 3 columns. a,b,c. There are multiple rows corresponding to each unique value of column a. I want to select top 5 rows corresponding to each unique value of column a. column c is some value and the data frame is already sorted by it in descending order, so that would not be a problem. Can anyone please suggest how can I do this in R.
Stealing #ptocquin's example, here's how you can use base function by. You can flatten the result using do.call (see below).
> by(data = data, INDICES = data$a, FUN = function(x) head(x, 5))
# or by(data = data, INDICES = data$a, FUN = head, 5)
data$a: 1
a b c
21 1 0.1188552 1.6389895
41 1 1.0182033 1.4811359
61 1 -0.8795879 0.7784072
81 1 0.6485745 0.7734652
31 1 1.5102255 0.7107957
------------------------------------------------------------
data$a: 2
a b c
15 2 -1.09704040 1.1710693
85 2 0.42914795 0.8826820
65 2 -1.01480957 0.6736782
45 2 -0.07982711 0.3693384
35 2 -0.67643885 -0.2170767
------------------------------------------------------------
A similar thing could be achieved by splitting your data.frame based on a and then using lapply to step through each element subsetting first n rows.
split.data <- split(data, data$a)
subsetted.data <- lapply(split.data, FUN = function(x) head(x, 5)) # or ..., FUN = head, 5) like above
flatten.data <- do.call("rbind", subsetted.data)
head(flatten.data)
a b c
1.21 1 0.11885516 1.63898947
1.41 1 1.01820329 1.48113594
1.61 1 -0.87958790 0.77840718
1.81 1 0.64857445 0.77346517
1.31 1 1.51022545 0.71079568
2.15 2 -1.09704040 1.17106930
2.85 2 0.42914795 0.88268205
2.65 2 -1.01480957 0.67367823
2.45 2 -0.07982711 0.36933837
2.35 2 -0.67643885 -0.21707668
Here is my try :
library(plyr)
data <- data.frame(a=rep(sample(1:20,10),10),b=rnorm(100),c=rnorm(100))
data <- data[rev(order(data$c)),]
head(data, 15)
a b c
28 6 1.69611039 1.720081
91 11 1.62656460 1.651574
70 9 -1.17808386 1.641954
6 15 1.23420550 1.603140
23 7 0.70854914 1.588352
51 11 -1.41234359 1.540738
19 10 2.83730734 1.522825
49 10 0.39313579 1.370831
80 9 -0.59445323 1.327825
59 10 -0.55538404 1.214901
18 6 0.08445888 1.152266
86 15 0.53027267 1.066034
69 10 -1.89077464 1.037447
62 1 -0.43599566 1.026505
3 7 0.78544009 1.014770
result <- ddply(data, .(a), "head", 5)
head(result, 15)
a b c
1 1 -0.43599566 1.02650544
2 1 -1.55113486 0.36380251
3 1 0.68608364 0.30911430
4 1 -0.85406406 0.05555500
5 1 -1.83894595 -0.11850847
6 5 -1.79715809 0.77760033
7 5 0.82814909 0.22401278
8 5 -1.52726859 0.06745849
9 5 0.51655092 -0.02737905
10 5 -0.44004646 -0.28106808
11 6 1.69611039 1.72008079
12 6 0.08445888 1.15226601
13 6 -1.99465060 0.82214319
14 6 0.43855489 0.76221979
15 6 -2.15251353 0.64417757