How to represent Graham's number in programming language (specifically python)? - math

I'm new to programming, and I would like to know how to represent Graham's number in python (the language I decided to learn as my first). I can show someone in real life on paper how to somewhat get to Graham's number, but for anyone who doesn't know what it is, here it is.
So imagine you have a 3. Now I can represent powers of 3 using ^ (up arrow). So 3^3 = 27. 3^^3 = 3^3^3 = 3^(3^3) = 3^27 = 7625597484987. 3^^^3 = 3^7625597484987 = scary big number. Now we can see that every time you add an up arrow, the number gets massively big.
Now imagine 3^^^^3 = 3^(3^7625597484987)... this number is stupid big.
So now that we have 3^(3^7625597484987), we will call this G1. That's 3^^^^3 (4 arrows in between the 3's).
Now G2 is basically 3 with G1 number of arrows in between them. Whatever number 3^(3^7625597484987) is, is the number of arrows in between the 2 3's of G2. So this number has 3^(3^7625597484987) number of arrows.
Now G3 has G2 number of arrows in between the 2 3's. We can see that this number (G3) is just huge. Stupidly huge. So each G has the number of arrows represented by the G before the current G.
Do this over and over again, placing and previous number of "G" arrows into the next number. Do this until G64, THAT'S Graham's number.
Now here is my question. How do you represent "the number of a certain thing (in this case arrows) is the number of arrows in the next G"? How do you represent the number of something "goes into" the next string in programming. If I can't do it in python, please post which languages this would be possible in. Thanks for any responses.

This is an example of a recursively defined number, which can be expressed using a base case and a recursive case. These two cases capture the idea of "every output is calculated from a previous output following the rule '____,' except for the first one which is ____."
A simple canonical one would be the factorial, which uses the base case 1! = 1 (or sometimes 0! = 1) and the recursive case n! = n * (n-1)! (when n>1). Or, in a more code-like fashion, f(1) = 1 and f(n) = n * f(n-1). For more information on how to write a function that behaves like this, find a good resource to learn about recursion.
The G1, G2, G3, etc. in the definition of Graham's number are like these calls to the previous results. You need a function to represent an "arrow" so you can call an arbitrary number of them. So to translate your mental model into code:
"[...] we will call this [3^^^^3] G1. [...] 'The number of a certain thing (in this case arrows) is the number of arrows in the next G' [...]"
Let the aforementioned function be arrow(n) = 3^^^...^3 (where there are n arrows). Then to get Graham's number, your base case will be G(1) = arrow(4), and your recursive case will be G(n) = arrow(G(n-1)) (when n>1).
Note that arrow(n) will also have a recursive definition (see Knuth's up-arrow notation), as you showed but didn't describe, by calculating each output from the previous (emphasis added):
3^3 = 27.
3^^3 = 3^3^3 = 3^(3^3) = 3^27 = 7625597484987.
3^^^3 = 3^7625597484987 = scary big number.
You might describe this as "every output [arrow(n)] is 3 to the power of the previous output, except for the first one [arrow(1)] which is just 3." I'll leave the translation from description to definition as an exercise.
(Also, I hope you didn't actually want to represent Graham's number, but rather just its calculation, since it's too big even for Python or any computer for that matter.)

class GrahamsNumber(object):
pass
G = GrahamsNumber()
For most purposes, this is as good of a representation of Graham's number as any other one. Sure, you can't do anything useful with G, but for the most part you can't do anything useful with Graham's number either, so it accurately reflects realistic use cases.
If you do have some specific use cases (and they're feasible), then a representation can be tailored to allow those use cases; but we can't guess what you want to be able to do with G, you have to spell it out explicitly.

For fun, I implemented hyperoperators in python as the module hyperop and one of my examples is Graham's number:
def GrahamsNumber():
# This may take awhile...
g = 4
for n in range(1,64+1):
g = hyperop(g+2)(3,3)
return g
The magic is in the recursion, which loosely stated looks like H[n](x,y) = reduce(lambda x,y: H[n-1](y,x), [a,]*b).
To answer your question, this function (in theory) will calculate the number in question. Since there is no way this program will ever finish before the heat death of the Universe, you gain more of an understanding from the "function" itself than the actual value.

Related

In what order we need to put weights on scale?

I' am doing my homework in programming, and I don't know how to solve this problem:
We have a set of n weights, we are putting them on a scale one by one until all weights is used. We also have string of n letters "R" or "L" which means which pen is heavier in that moment, they can't be in balance. There are no weights with same mass. Compute in what order we have to put weights on scale and on which pan.
The goal is to find order of putting weights on scale, so the input string is respected.
Input: number 0 < n < 51, number of weights. Then weights and the string.
Output: in n lines, weight and "R" or "L", side where you put weight. If there are many, output any of them.
Example 1:
Input:
3
10 20 30
LRL
Output:
10 L
20 R
30 L
Example 2:
Input:
3
10 20 30
LLR
Output:
20 L
10 R
30 R
Example 3:
Input:
5
10 20 30 40 50
LLLLR
Output:
50 L
10 L
20 R
30 R
40 R
I already tried to compute it with recursion but unsuccessful. Can someone please help me with this problem or just gave me hints how to solve it.
Since you do not show any code of your own, I'll give you some ideas without code. If you need more help, show more of your work then I can show you Python code that solves your problem.
Your problem is suitable for backtracking. Wikipedia's definition of this algorithm is
Backtracking is a general algorithm for finding all (or some) solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution.
and
Backtracking can be applied only for problems which admit the concept of a "partial candidate solution" and a relatively quick test of whether it can possibly be completed to a valid solution.
Your problem satisfies those requirements. At each stage you need to choose one of the remaining weights and one of the two pans of the scale. When you place the chosen weight on the chosen pan, you determine if the corresponding letter from the input string is satisfied. If not, you reject the choice of weight and pan. If so, you continue by choosing another weight and pan.
Your overall routine first inputs and prepares the data. It then calls a recursive routine that chooses one weight and one pan at each level. Some of the information needed by each level could be put into mutable global variables, but it would be more clear if you pass all needed information as parameters. Each call to the recursive routine needs to pass:
the weights not yet used
the input L/R string not yet used
the current state of the weights on the pans, in a format that can easily be printed when finalized (perhaps an array of ordered pairs of a weight and a pan)
the current weight imbalance of the pans. This could be calculated from the previous parameter, but time would be saved by passing this separately. This would be total of the weights on the right pan minus the total of the weights on the left pan (or vice versa).
Your base case for the recursion is when the unused-weights and unused-letters are empty. You then have finished the search and can print the solution and quit the program. Otherwise you loop over all combinations of one of the unused weights and one of the pans. For each combination, calculate what the new imbalance would be if you placed that weight on that pan. If that new imbalance agrees with the corresponding letter, call the routine recursively with appropriately-modified parameters. If not, do nothing for this weight and pan.
You still have a few choices to make before coding, such as the data structure for the unused weights. Show me some of your own coding efforts then I'll give you my Python code.
Be aware that this could be slow for a large number of weights. For n weights and two pans, the total number of ways to place the weights on the pans is n! * 2**n (that is a factorial and an exponentiation). For n = 50 that is over 3e79, much too large to do. The backtracking avoids most groups of choices, since choices are rejected as soon as possible, but my algorithm could still be slow. There may be a better algorithm than backtracking, but I do not see it. Your problem seems to be designed to be handled by backtracking.
Now that you have shown more effort of your own, here is my un-optimized Python 3 code. This works for all the examples you gave, though I got a different valid solution for your third example.
def weights_on_pans():
def solve(unused_weights, unused_tilts, placement, imbalance):
"""Place the weights on the scales using recursive
backtracking. Return True if successful, False otherwise."""
if not unused_weights:
# Done: print the placement and note that we succeeded
for weight, pan in placement:
print(weight, 'L' if pan < 0 else 'R')
return True # success right now
tilt, *later_tilts = unused_tilts
for weight in unused_weights:
for pan in (-1, 1): # -1 means left, 1 means right
new_imbalance = imbalance + pan * weight
if new_imbalance * tilt > 0: # both negative or both positive
# Continue searching since imbalance in proper direction
if solve(unused_weights - {weight},
later_tilts,
placement + [(weight, pan)],
new_imbalance):
return True # success at a lower level
return False # not yet successful
# Get the inputs from standard input. (This version has no validity checks)
cnt_weights = int(input())
weights = {int(item) for item in input().split()}
letters = input()
# Call the recursive routine with appropriate starting parameters.
tilts = [(-1 if letter == 'L' else 1) for letter in letters]
solve(weights, tilts, [], 0)
weights_on_pans()
The main way I can see to speed up that code is to avoid the O(n) operations in the call to solve in the inner loop. That means perhaps changing the data structure of unused_weights and changing how it, placement, and perhaps unused_tilts/later_tilts are modified to use O(1) operations. Those changes would complicate the code, which is why I did not do them.

Finding all permutations for a given number of football games in ocaml

I have to write the function series : int -> int -> result list list, so the first int for the number of games and the second int for the points to earn.
I already thought about an empirical solution by creating all permutations and filtering the list, but I think this would be in ocaml very dirty solution with many lines of code. And I cant find another way to solve this problem.
The following types are given
type result = Win (* 3 points *)
| Draw (* 1 point *)
| Loss (* 0 points *)
so if i call
series 3 4
the solution should be:
[[Win ;Draw ;Loss]; [Win ;Loss ;Draw]; [Draw ;Win ;Loss];
[Draw ;Loss ;Win]; [Loss ;Win ;Draw]; [Loss ;Draw ;Win]]
Maybe someone can give me a hint or a code example how to start.
Consider calls of the form series n (n / 2), and consider cases where all the games were Draw or Loss. Under these restrictions the number of answers is proportional to 2^n/sqrt(n). (Guys online get this from Stirling's approximation.)
This doesn't include any series where anybody wins a game. So the actual result lists will be longer than this in general.
I conclude that the number of possible answers is gigantic, and hence that your actual cases are going to be small.
If your actual cases are small, there might be no problem with using a brute-force approach.
Contrary to your claim, brute-force code is usually quite short and easy to understand.
You can easily write a function to list all possible sequences of length n taken from Win, Lose, Draw. You can then filter them for the correct sum. Asymptotically this is probably only a little worse than the fastest algorithm, due to the near-exponential behavior described above.
A simple recursive solution would go along this way:
if there's 0 game to play and 0 point to earn, then there is exactly one (empty) solution
if there's 0 game to play and 1 or more points to earn, there is no solution.
otherwise, p points must be earned in g games: any solution for p points in g-1 game can be extended to a solution by adding a Loss in front of it. If p>=1, you can similarly add a Draw to any solution for p-1 in g-1 games, and if p>=3, there might also be possibilities starting with a Win.

How could I calculate the number of recursions that a recursive rule does?

I deal with a problem; I want to calculate how many recursions a recursive rule of my code does.
My program examines whether an object is component of a computer hardware or not(through component(X,Y) predicate).E.g component(computer,motherboard) -> true.
It does even examine the case an object is not directly component but subcomponent of another component. E.g. subcomponent(computer,ram) -> true. (as ram is component of motherboard and motherboard is component of computer)
Because my code is over 400 lines I will present you just some predicates of the form component(X,Y) and the rule subcomponent(X,Y).
So, some predicates are below:
component(computer,case).
component(computer,power_supply).
component(computer,motherboard).
component(computer,storage_devices).
component(computer,expansion_cards).
component(case,buttons).
component(case,fans).
component(case,ribbon_cables).
component(case,cables).
component(motherboard,cpu).
component(motherboard,chipset).
component(motherboard,ram).
component(motherboard,rom).
component(motherboard,heat_sink).
component(cpu,chip_carrier).
component(cpu,signal_pins).
component(cpu,control_pins).
component(cpu,voltage_pins).
component(cpu,capacitors).
component(cpu,resistors).
and so on....
My rule is:
subcomponent(X,Z):- component(X,Z).
subcomponent(X,Z):- component(X,Y),subcomponent(Y,Z).
Well, in order to calculate the number of components that a given component X to a given component Y has-that is the number of recursions that the recursive rule subcomponents(X,Y), I have made some attempts that failed. However, I present them below:
i)
number_of_components(X,Y,N,T):- T is N+1, subcomponent(X,Y).
number_of_components(X,Y,N,T):- M is N+1, subcomponent(X,Z), number_of_components(Z,Y,M,T).
In this case I get this error: "ERROR: is/2: Arguments are not sufficiently instantiated".
ii)
number_of_components(X,Y):- bagof(Y,subcomponent(X,Y),L),
length(L,N),
write(N).
In this case I get as a result either 1 or 11 and after this number true and that's all. No logic at all!
iii)
count_elems_acc([], Total, Total).
count_elems_acc([Head|Tail], Sum, Total) :-
Count is Sum + 1,
count_elems_acc(Tail, Count, Total).
number_of_components(X,Y):- bagof(Y,subcomponent(X,Y),L),
count_elems_acc(L,0,Total),
write(Total).
In this case I get as results numbers which are not right according to my knowledge base.(or I mistranslate them-because this way seems to have some logic)
So, what am I doing wrong and what should I write instead?
I am looking forward to reading your answers!
One thing you could do is iterative deepening with call_with_depth_limit/3. You call your predicate (in this case, subcomponent/2). You increase the limit until you get a result, and if you get a result, the limit is the deepest recursion level used. You can see the documentation for this.
However, there is something easier you can do. Your database can be represented as an unweighted, directed, acyclic graph. So, stick your whole database in a directed graph, as implemented in library(ugraphs), and find its transitive closure. In the transitive closure, the neighbours of a component are all its subcomponents. Done!
To make the graph:
findall(C-S, component(C, S), Es),
vertices_edges_to_ugraph([], Es, Graph)
To find the transitive closure:
transitive_closure(Graph, Closure)
And to find subcomponents:
neighbours(Component, Closure, Subcomponents)
The Subcomponents will be a list, and you can just get its length with length/2.
EDIT
Some random thoughts: in your case, your database seems to describe a graph that is by definition both directed and acyclic (the component-subcomponent relationship goes strictly one way, right?). This is what makes it unnecessary to define your own walk through the graph, as for example nicely demonstrated in this great question and answers. So, you don't need to define your own recursive subcomponent predicate, etc.
One great thing about representing the database as a term when working with it, instead of keeping it as a flat table, is that it becomes trivial to write predicates that manipulate it: you get Prolog's backtracking for free. And since the S-representation of a graph that library(ugraph) uses is well-suited for Prolog, you most probably end up with a more efficient program, too.
The number of calls of a predicate can be a difficult concept. I would say, use the tools that your system make available.
?- profile(number_of_components(computer,X)).
20===================================================================
Total time: 0.00 seconds
=====================================================================
Predicate Box Entries = Calls+Redos Time
=====================================================================
$new_findall_bag/0 1 = 1+0 0.0%
$add_findall_bag/1 20 = 20+0 0.0%
$free_variable_set/3 1 = 1+0 0.0%
...
so:count_elems_acc/3 1 = 1+0 0.0%
so:subcomponent/2 22 = 1+21 0.0%
so:component/2 74 = 42+32 0.0%
so:number_of_components/2 2 = 1+1 0.0%
On the other hand, what is of utmost importance is the relation among clause variables. This is the essence of Prolog. So, try to read - let's say, in plain English - your rules.
i) number_of_components(X,Y,N,T) what relation N,T have to X ? I cannot say. So
?- leash(-all),trace.
?- number_of_components(computer,Y,N,T).
Call: (7) so:number_of_components(computer, _G1931, _G1932, _G1933)
Call: (8) _G1933 is _G1932+1
ERROR: is/2: Arguments are not sufficiently instantiated
Exception: (8) _G1933 is _G1932+1 ?
ii) number_of_components(X,Y) here would make much sense if Y would be the number_of_components of X. Then,
number_of_components(X,Y):- bagof(S,subcomponent(X,S),L), length(L,Y).
that yields
?- number_of_components(computer,X).
X = 20.
or better
?- aggregate(count, S^subcomponent(computer,S), N).
N = 20.
Note the usage of S. It is 'existentially quantified' in the goal where it appears. That is, allowed to change while proving the goal.
iii) count_elements_acc/3 is - more or less - equivalent to length/2, so the outcome (printed) seems correct, but again, it's the relation between X and Y that your last clause fails to establish. Printing from clauses should be used only when the purpose is to perform side effects... for instance, debugging...

Making a cryptaritmetic solver in C++

I am planning out a C++ program that takes 3 strings that represent a cryptarithmetic puzzle. For example, given TWO, TWO, and FOUR, the program would find digit substitutions for each letter such that the mathematical expression
TWO
+ TWO
------
FOUR
is true, with the inputs assumed to be right justified. One way to go about this would of course be to just brute force it, assigning every possible substitution for each letter with nested loops, trying the sum repeatedly, etc., until the answer is finally found.
My thought is that though this is terribly inefficient, the underlying loop-check thing may be a feasible (or even necessary) way to go--after a series of deductions are performed to limit the domains of each variable. I'm finding it kind of hard to visualize, but would it be reasonable to first assume a general/padded structure like this (each X represents a not-necessarily distinct digit, and each C is a carry digit, which in this case, will either be 0 or 1)? :
CCC.....CCC
XXX.....XXXX
+ XXX.....XXXX
----------------
CXXX.....XXXX
With that in mind, some more planning thoughts:
-Though leading zeros will not be given in the problem, I probably ought to add enough of them where appropriate to even things out/match operands up.
-I'm thinking I should start with a set of possible values 0-9 for each letter, perhaps stored as vectors in a 'domains' table, and eliminate values from this as deductions are made. For example, if I see some letters lined up like this
A
C
--
A
, I can tell that C is zero and this eliminate all other values from its domain. I can think of quite a few deductions, but generalizing them to all kinds of little situations and putting it into code seems kind of tricky at first glance.
-Assuming I have a good series of deductions that run through things and boot out lots of values from the domains table, I suppose I'd still just loop over everything and hope that the state space is small enough to generate a solution in a reasonable amount of time. But it feels like there has to be more to it than that! -- maybe some clever equations to set up or something along those lines.
Tips are appreciated!
You could iterate over this problem from right to left, i.e. the way you'd perform the actual operation. Start with the rightmost column. For every digit you encounter, you check whether there already is an assignment for that digit. If there is, you use its value and go on. If there isn't, then you enter a loop over all possible digits (perhaps omitting already used ones if you want a bijective map) and recursively continue with each possible assignment. When you reach the sum row, you again check whether the variable for the digit given there is already assigned. If it is not, you assign the last digit of your current sum, and then continue to the next higher valued column, taking the carry with you. If there already is an assignment, and it agrees with the last digit of your result, you proceed in the same way. If there is an assignment and it disagrees, then you abort the current branch, and return to the closest loop where you had other digits to choose from.
The benefit of this approach should be that many variables are determined by a sum, instead of guessed up front. Particularly for letters which only occur in the sum row, this might be a huge win. Furthermore, you might be able to spot errors early on, thus avoiding choices for letters in some cases where the choices you made so far are already inconsistent. A drawback might be the slightly more complicated recursive structure of your program. But once you got that right, you'll also have learned a good deal about turning thoughts into code.
I solved this problem at my blog using a randomized hill-climbing algorithm. The basic idea is to choose a random assignment of digits to letters, "score" the assignment by computing the difference between the two sides of the equation, then altering the assignment (swap two digits) and recompute the score, keeping those changes that improve the score and discarding those changes that don't. That's hill-climbing, because you only accept changes in one direction. The problem with hill-climbing is that it sometimes gets stuck in a local maximum, so every so often you throw out the current attempt and start over; that's the randomization part of the algorithm. The algorithm is very fast: it solves every cryptarithm I have given it in fractions of a second.
Cryptarithmetic problems are classic constraint satisfaction problems. Basically, what you need to do is have your program generate constraints based on the inputs such that you end up with something like the following, using your given example:
O + O = 2O = R + 10Carry1
W + W + Carry1 = 2W + Carry1 = U + 10Carry2
T + T + Carry2 = 2T + Carry2 = O + 10Carry3 = O + 10F
Generalized pseudocode:
for i in range of shorter input, or either input if they're the same length:
shorterInput[i] + longerInput2[i] + Carry[i] = result[i] + 10*Carry[i+1] // Carry[0] == 0
for the rest of the longer input, if one is longer:
longerInput[i] + Carry[i] = result[i] + 10*Carry[i+1]
Additional constraints based on the definition of the problem:
Range(digits) == {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Range(auxiliary_carries) == {0, 1}
So for your example:
Range(O, W, T) == {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Range(Carry1, Carry2, F) == {0, 1}
Once you've generated the constraints to limit your search space, you can use CSP resolution techniques as described in the linked article to walk the search space and determine your solution (if one exists, of course). The concept of (local) consistency is very important here and taking advantage of it allows you to possibly greatly reduce the search space for CSPs.
As a simple example, note that cryptarithmetic generally does not use leading zeroes, meaning if the result is longer than both inputs the final digit, i.e. the last carry digit, must be 1 (so in your example, it means F == 1). This constraint can then be propagated backwards, as it means that 2T + Carry2 == O + 10; in other words, the minimum value for T must be 5, as Carry2 can be at most 1 and 2(4)+1==9. There are other methods of enhancing the search (min-conflicts algorithm, etc.), but I'd rather not turn this answer into a full-fledged CSP class so I'll leave further investigation up to you.
(Note that you can't make assumptions like A+C=A -> C == 0 except for in least significant column due to the possibility of C being 9 and the carry digit into the column being 1. That does mean that C in general will be limited to the domain {0, 9}, however, so you weren't completely off with that.)

As a programmer how would you explain imaginary numbers?

As a programmer I think it is my job to be good at math but I am having trouble getting my head round imaginary numbers. I have tried google and wikipedia with no luck so I am hoping a programmer can explain in to me, give me an example of a number squared that is <= 0, some example usage etc...
I guess this blog entry is one good explanation:
The key word is rotation (as opposed to direction for negative numbers, which are as stranger as imaginary number when you think of them: less than nothing ?)
Like negative numbers modeling flipping, imaginary numbers can model anything that rotates between two dimensions “X” and “Y”. Or anything with a cyclic, circular relationship
Problem: not only am I a programmer, I am a mathematician.
Solution: plow ahead anyway.
There's nothing really magical to complex numbers. The idea behind their inception is that there's something wrong with real numbers. If you've got an equation x^2 + 4, this is never zero, whereas x^2 - 2 is zero twice. So mathematicians got really angry and wanted there to always be zeroes with polynomials of degree at least one (wanted an "algebraically closed" field), and created some arbitrary number j such that j = sqrt(-1). All the rules sort of fall into place from there (though they are more accurately reorganized differently-- specifically, you formally can't actually say "hey this number is the square root of negative one"). If there's that number j, you can get multiples of j. And you can add real numbers to j, so then you've got complex numbers. The operations with complex numbers are similar to operations with binomials (deliberately so).
The real problem with complexes isn't in all this, but in the fact that you can't define a system whereby you can get the ordinary rules for less-than and greater-than. So really, you get to where you don't define it at all. It doesn't make sense in a two-dimensional space. So in all honesty, I can't actually answer "give me an exaple of a number squared that is <= 0", though "j" makes sense if you treat its square as a real number instead of a complex number.
As for uses, well, I personally used them most when working with fractals. The idea behind the mandelbrot fractal is that it's a way of graphing z = z^2 + c and its divergence along the real-imaginary axes.
You might also ask why do negative numbers exist? They exist because you want to represent solutions to certain equations like: x + 5 = 0. The same thing applies for imaginary numbers, you want to compactly represent solutions to equations of the form: x^2 + 1 = 0.
Here's one way I've seen them being used in practice. In EE you are often dealing with functions that are sine waves, or that can be decomposed into sine waves. (See for example Fourier Series).
Therefore, you will often see solutions to equations of the form:
f(t) = A*cos(wt)
Furthermore, often you want to represent functions that are shifted by some phase from this function. A 90 degree phase shift will give you a sin function.
g(t) = B*sin(wt)
You can get any arbitrary phase shift by combining these two functions (called inphase and quadrature components).
h(t) = Acos(wt) + iB*sin(wt)
The key here is that in a linear system: if f(t) and g(t) solve an equation, h(t) will also solve the same equation. So, now we have a generic solution to the equation h(t).
The nice thing about h(t) is that it can be written compactly as
h(t) = Cexp(wt+theta)
Using the fact that exp(iw) = cos(w)+i*sin(w).
There is really nothing extraordinarily deep about any of this. It is merely exploiting a mathematical identity to compactly represent a common solution to a wide variety of equations.
Well, for the programmer:
class complex {
public:
double real;
double imaginary;
complex(double a_real) : real(a_real), imaginary(0.0) { }
complex(double a_real, double a_imaginary) : real(a_real), imaginary(a_imaginary) { }
complex operator+(const complex &other) {
return complex(
real + other.real,
imaginary + other.imaginary);
}
complex operator*(const complex &other) {
return complex(
real*other.real - imaginary*other.imaginary,
real*other.imaginary + imaginary*other.real);
}
bool operator==(const complex &other) {
return (real == other.real) && (imaginary == other.imaginary);
}
};
That's basically all there is. Complex numbers are just pairs of real numbers, for which special overloads of +, * and == get defined. And these operations really just get defined like this. Then it turns out that these pairs of numbers with these operations fit in nicely with the rest of mathematics, so they get a special name.
They are not so much numbers like in "counting", but more like in "can be manipulated with +, -, *, ... and don't cause problems when mixed with 'conventional' numbers". They are important because they fill the holes left by real numbers, like that there's no number that has a square of -1. Now you have complex(0, 1) * complex(0, 1) == -1.0 which is a helpful notation, since you don't have to treat negative numbers specially anymore in these cases. (And, as it turns out, basically all other special cases are not needed anymore, when you use complex numbers)
If the question is "Do imaginary numbers exist?" or "How do imaginary numbers exist?" then it is not a question for a programmer. It might not even be a question for a mathematician, but rather a metaphysician or philosopher of mathematics, although a mathematician may feel the need to justify their existence in the field. It's useful to begin with a discussion of how numbers exist at all (quite a few mathematicians who have approached this question are Platonists, fyi). Some insist that imaginary numbers (as the early Whitehead did) are a practical convenience. But then, if imaginary numbers are merely a practical convenience, what does that say about mathematics? You can't just explain away imaginary numbers as a mere practical tool or a pair of real numbers without having to account for both pairs and the general consequences of them being "practical". Others insist in the existence of imaginary numbers, arguing that their non-existence would undermine physical theories that make heavy use of them (QM is knee-deep in complex Hilbert spaces). The problem is beyond the scope of this website, I believe.
If your question is much more down to earth e.g. how does one express imaginary numbers in software, then the answer above (a pair of reals, along with defined operations of them) is it.
I don't want to turn this site into math overflow, but for those who are interested: Check out "An Imaginary Tale: The Story of sqrt(-1)" by Paul J. Nahin. It talks about all the history and various applications of imaginary numbers in a fun and exciting way. That book is what made me decide to pursue a degree in mathematics when I read it 7 years ago (and I was thinking art). Great read!!
The main point is that you add numbers which you define to be solutions to quadratic equations like x2= -1. Name one solution to that equation i, the computation rules for i then follow from that equation.
This is similar to defining negative numbers as the solution of equations like 2 + x = 1 when you only knew positive numbers, or fractions as solutions to equations like 2x = 1 when you only knew integers.
It might be easiest to stop trying to understand how a number can be a square root of a negative number, and just carry on with the assumption that it is.
So (using the i as the square root of -1):
(3+5i)*(2-i)
= (3+5i)*2 + (3+5i)*(-i)
= 6 + 10i -3i - 5i * i
= 6 + (10 -3)*i - 5 * (-1)
= 6 + 7i + 5
= 11 + 7i
works according to the standard rules of maths (remembering that i squared equals -1 on line four).
An imaginary number is a real number multiplied by the imaginary unit i. i is defined as:
i == sqrt(-1)
So:
i * i == -1
Using this definition you can obtain the square root of a negative number like this:
sqrt(-3)
== sqrt(3 * -1)
== sqrt(3 * i * i) // Replace '-1' with 'i squared'
== sqrt(3) * i // Square root of 'i squared' is 'i' so move it out of sqrt()
And your final answer is the real number sqrt(3) multiplied by the imaginary unit i.
A short answer: Real numbers are one-dimensional, imaginary numbers add a second dimension to the equation and some weird stuff happens if you multiply...
If you're interested in finding a simple application and if you're familiar with matrices,
it's sometimes useful to use complex numbers to transform a perfectly real matrice into a triangular one in the complex space, and it makes computation on it a bit easier.
The result is of course perfectly real.
Great answers so far (really like Devin's!)
One more point:
One of the first uses of complex numbers (although they were not called that way at the time) was as an intermediate step in solving equations of the 3rd degree.
link
Again, this is purely an instrument that is used to answer real problems with real numbers having physical meaning.
In electrical engineering, the impedance Z of an inductor is jwL, where w = 2*pi*f (frequency) and j (sqrt(-1))means it leads by 90 degrees, while for a capacitor Z = 1/jwc = -j/wc which is -90deg/wc so that it lags a simple resistor by 90 deg.

Resources