Following up from this question (see for reproducible data frame) I want to run MCMCGLMM n times, where n is the number of randomisations. I have tried to construct a loop which runs all the chains, and saves them (to retrieve the posterior distributions of the randomised variable later) but I am encountering problems.
This is what the data frame looks like (when n = 5, hence R1-R5), A = response variable, L and V are random effect variables, B is a fixed effect, R1-R5 are random assignments of L with structure of V maintained:
ID L B V A R1 R2 R3 R4 R5
1 1_1_1 1 1 1 11.1 6 19 21 1 31
2 1_1_1 1 1 1 6.9 6 19 21 1 31
3 1_1_4 1 1 4 7.7 2 24 8 22 22
4 1_1_4 1 1 4 10.5 2 24 8 22 22
5 1_1_5 1 1 5 8.5 11 27 14 17 22
6 1_1_7 1 1 7 11.2 5 24 13 18 25
I can create the names I want to assign to my chains, and the names of the variable that changes with each run of the MCMC chain (R1-Rn):
n = 5
Rs = as.vector(rep(NA,n))
for(i in 1:n){
Rs[i] = paste("R",i, sep = "")
}
Rs
Output:
> Rs
[1] "R1" "R2" "R3" "R4" "R5"
I then tried this loop to produce 5 chains:
for(i in 1:n){
chains[i] = MCMCglmm(A ~1 + B,
random = as.formula(paste0("~" ,Rs[i], " + Vial")),
rcov = ~units,
nitt = 500,
thin = 2,
burnin = 50,
prior = prior2,
family = "gaussian",
start = list(QUASI = FALSE),
data = df)
}
Thanks Roland for helping to get the random effect to call properly, previously I was getting an error Error in buildZ(rmodel.terms[r] ... object Rs[i] not found- fixed by as.formula
But this stores all of the data in chains and seemingly only the $Sol components, but I need to be able to access the values within the VCV, specifically the posterior distributions of the R variables (e.g. summary(chainR1$VCV))
In summary: It seems I am making a mistake in how I assign the chain names, does anyone have a suggestion of how to do this, and save the posterior distributions or even the whole chain?
Using assign was a key point:
n = 10 #Number of chains to run
chainVCVdf = matrix(rep(NA, times = ((nitt-burnin)/thin)*n), ncol = n)
colnames(chainVCVdf)=c(rep("X", times = n))
for(i in 1:n){
assign("chainX",paste0("chain",Rs[i]))
chainX = MCMCglmm(A ~1 + B,
random = as.formula(paste0("~" ,Rs[i], " + V")),
rcov = ~units,
nitt = nitt,
thin = thin,
burnin = burnin,
prior = prior1,
family = "gaussian",
start = list(QUASI = FALSE),
data = df)
assign("chainVCV", chainX$VCV[,1])
chainVCVdf[,i]=(chainVCV)
colnames(chainVCVdf)[i] = colnames(chainX$VCV)[1]
}
It then became possible to build a matrix of the VCV component that I am interested in (namely the randomised L assignment in columns R1-Rn)
It seems as though you want to run a number of different MCMCglmm formulas in a loop. #Roland has helped you found the solution to this (although I personally would create the formulas prior to the loop). #Roland also points out that in order to save the results of each model, you should save them in a list - rather than a chain as you are currently doing. You could also save each model as an .RData file, as seen in the end of the question. To formalize an answer to this question I would perform this in the following way:
Rs = paste0("~R", 1:5, " + V") ## Create all model formulae
chainNames = paste0("chainR", 1:5) ## Names for each model
chains = list() ## Initialize list
## Loop over models
for(i in 1:length(Rs)){
chains[[i]] = MCMCglmm(A ~1 + B,
random = formula(Rs[i]),
rcov = ~units,
nitt = 500,
thin = 2,
burnin = 50,
prior = prior2,
family = "gaussian",
start = list(QUASI = FALSE),
data = df)
}
names(chains) = chainNames ## Name each model
save(chains, "chainsR1-R5.Rdata") ## Save all model output
A side note, paste0 is the same as paste, but with the argument sep="" by default
Related
I've got this data processing:
library(text2vec)
##Using perplexity for hold out set
t1 <- Sys.time()
perplex <- c()
for (i in 3:25){
set.seed(17)
lda_model2 <- LDA$new(n_topics = i)
doc_topic_distr2 <- lda_model2$fit_transform(x = dtm, progressbar = F)
set.seed(17)
sample.dtm2 <- itoken(rawsample$Abstract,
preprocessor = prep_fun,
tokenizer = tok_fun,
ids = rawsample$id,
progressbar = F) %>%
create_dtm(vectorizer,vtype = "dgTMatrix", progressbar = FALSE)
set.seed(17)
new_doc_topic_distr2 <- lda_model2$transform(sample.dtm2, n_iter = 1000,
convergence_tol = 0.001, n_check_convergence = 25,
progressbar = FALSE)
perplex[i] <- text2vec::perplexity(sample.dtm2, topic_word_distribution =
lda_model2$topic_word_distribution,
doc_topic_distribution = new_doc_topic_distr2)
}
print(difftime(Sys.time(), t1, units = 'sec'))
I know there are a lot of questions like this, but I haven't been able to exactly find the answer to my situation. Above you see perplexity calculation from 3 to 25 topic number for a Latent Dirichlet Allocation model. I want to get the most sufficient value among those, meaning that I want to find the elbow or knee, for those values that might only be considered as a simple numeric vector which outcome looks like this:
1 NA
2 NA
3 222.6229
4 210.3442
5 200.1335
6 190.3143
7 180.4195
8 174.2634
9 166.2670
10 159.7535
11 153.7785
12 148.1623
13 144.1554
14 141.8250
15 138.8301
16 134.4956
17 131.0745
18 128.8941
19 125.8468
20 123.8477
21 120.5155
22 118.4426
23 116.4619
24 113.2401
25 114.1233
plot(perplex)
This is how plot looks like
I would say that the elbow would be 13 or 16, but I'm not completely sure and I want the exact number as an outcome. I saw in this paper that f''(x) / (1+f'(x)^2)^1.5 is the knee formula, which I tried like this and says it's 18:
> d1 <- diff(perplex) # first derivative
> d2 <- diff(d1) / diff(perplex[-1]) # second derivative
> knee <- (d2)/((1+(d1)^2)^1.5)
Warning message:
In (d2)/((1 + (d1)^2)^1.5) :
longer object length is not a multiple of shorter object length
> which.min(knee)
[1] 18
I can't fully figure this thing out. Would someone like to share how I could get the exact ideal topics number according to perplexity as an outcome?
Found this: "The LDA model with the optimal coherence score, obtained with an elbow method (the point with maximum absolute second derivative) (...)" in this paper, so this coding does the work: d1 <- diff(perplex); k <- which.max(abs(diff(d1) / diff(perplex[-1])))
I am using the r predict function, and it is returning more values than I expected it too. I created a linear model for the data to predict MDC from PKWH, MDT, and MDT2, then I created new data for input values into the predict function. The original data for utility has 24 values for each column of MDC, PKWH, MDT, and MDT2.
fit2 <- lm(MDC ~ MDT + MDT2 + PKWH*(1 + MDT + MDT2), data =
utility)
predict <- predict(fit2, data = data.frame(PKWH = 9, MDT = 75, MDT2
= 5625))
I expected the predict() function to produce 1 predicted value for the inputs of PKWH = 9 | MDT = 75 | MDT2 = 5625, but it gave me these 24 values.
1 2 3 4 5 6 7
56.67781 51.66653 45.05200 42.12583 38.98647 38.80904 42.60033
8 9 10 11 12 13 14
46.86545 49.51928 54.15163 61.54441 68.00122 49.17722 45.27917
15 16 17 18 19 20 21
42.88154 40.93468 38.39330 37.80963 39.47550 41.58780 42.94447
22 23 24
46.25884 49.27053 53.98732
Also, when I plug the new input values to calculate the predicted value using the coefficients from the linear model, I get 55.42165 which is not found on the list of the 24 values from the predict() function.
first, I wouldn't name your result predict - you want to save that for the function. You need
predicted_data <- predict(fit2, newdata = data.frame(PKWH = 9, MDT = 75, MDT2
= 5625))
It's not throwing an error because predict has a catch-all (...) at the end where input to data is heading, but it's giving you the predictions for the data you fit the model with.
I have the following PCA data on which i am doing Kmeans clustering:
head(pcdffinal)
PC1 PC2 PC3 PC4 PC5 PC6
1 -9.204228 -2.73517110 2.7975063 0.6794614 -0.84627095 0.4455297
2 2.927245 0.05666389 0.5085896 0.1472800 0.18193152 0.1041490
3 -4.667932 -1.98176361 2.2751862 0.5347725 -0.43314927 0.3222719
4 -1.366505 -0.40858595 0.5005192 0.4507366 -0.54996933 0.5533013
5 -4.689454 -2.77185636 2.4323856 0.7387788 0.49237229 -0.4817083
6 -3.477046 -1.84904214 1.5539558 0.5463861 -0.03231143 0.2814843
opt.cluster<-3
set.seed(115)
pccomp.km <- kmeans(pcdffinal,opt.cluster,nstart=25)
head(pccomp.km$cluster)
[1] 2 1 2 2 2 2
barplot(table(pccomp.km$cluster), col="steelblue")
pccomp.km$tot.withinss #For total within cluster sum of squares.
[1] 13172.59
We can also use a plot to illustrate the groups that the data have been arranged into.
par(mfrow=c(1,1))
plot(pcdffinal[,1:2],col=(pccomp.km$cluster+1),main=paste('K-Means Clustering result with k = ', opt.cluster,sep=" "),pch=20,cex=2)
points(pccomp.km$centers, pch=15,cex=2)#plotting the centres of the cluster as black squares
library("factoextra")
fviz_cluster(pccomp.km, data = pcdffinal, frame.type = "convex")+ theme_minimal()
df.num_kmeans<-df.num
df.num_kmeans$cluster.kmeans <- pccomp.km$cluster# is a vector of cluster assignment from kmeans() added as a column to the original dataset as
save this dataset & kmeans model for further use
saveRDS(pccomp.km, "kmeans_model.RDS")
write.csv(df.num_kmeans,"dfnum_kmeans.cluster.csv")
library(cluster)
clusplot(df.num_kmeans,pccomp.km$cluster,color = TRUE,shade=TRUE,labels = 2,lines = 0)
library(ggfortify)
autoplot(pccomp.km, data=pcdffinal, frame=TRUE,frame.type='norm')
I would like to do Kmeans iteratively for a range of Ks say k=2:6 each time making plots for the respective k as well as saving the models as well as the data as a csv but each done separately for different k's.
Need help to convert the above codes into an iterative with the counter i going from 2 till 6.
original data:
head(df.num_kmeans)
datausage mou revenue calldrop handset2g handset3g smartphone
1 896804.7 2854801 40830.404 27515 7930 19040 20810
2 155932.1 419109 5512.498 5247 2325 2856 3257
3 674983.3 2021183 25252.265 21068 6497 13056 14273
4 522787.2 1303221 14547.380 8865 4693 9439 10746
5 523465.7 1714641 24177.095 25441 8668 12605 14766
6 527062.3 1651303 20153.482 18219 6822 11067 12994
rechargecount rechargesum arpu subscribers
1 4461 235430 197704.10 105822
2 843 39820 34799.21 18210
3 2944 157099 133842.38 71351
4 2278 121697 104681.58 44975
5 2802 144262 133190.55 75860
6 2875 143333 119389.91 63740
Using random forest for accuracy comparison
dfnum.kmeans <- read.csv("dfnum_kmeans.cluster.csv")
table(dfnum.kmeans$cluster.kmeans) # size of each cluster
convert cluster var into a factor
dfnum.kmeans$cluster.kmeans <- as.factor(dfnum.kmeans$cluster.kmeans)
is.factor(dfnum.kmeans$cluster.kmeans)
create training and test sets (75:25 split) using 'caret' package
set.seed(128) # for reproducibility
inTrain_kmeans <- caret::createDataPartition(y = dfnum.kmeans$cluster.kmeans, p = 0.75, list = FALSE)
training_kmeans <- dfnum.kmeans[inTrain_kmeans, ]
testing_kmeans <- dfnum.kmeans[-inTrain_kmeans, ]
set.seed(122)
control <- trainControl(method = "repeatedcv", number = 10,allowParallel = TRUE)
modFit.rfcaret_kmeans <- caret::train(cluster.kmeans~ ., method = "rf",data = training_kmeans, trControl = control, number = 25)
modFit.rfcaret_kmeans$finalModel
pred.test_kmeans = predict(modFit.rfcaret_kmeans, testing_kmeans); confusionMatrix(pred.test_kmeans, testing_kmeans$cluster.kmeans )
confusionMatrix(pred.test_kmeans, testing_kmeans$cluster.kmeans )$overall[1]
Assuming that your original dataframe is df.num, the following could save all the files (for different k values) in your working directory:
for (k in 2:6) {
set.seed(115)
pccomp.km <- kmeans(pcdffinal,k,nstart=25)
head(pccomp.km$cluster)
print(paste(k, pccomp.km$tot.withinss)) #For total within cluster sum of squares.
png(paste0('kmeans_proj_',k, '.png'))
par(mfrow=c(1,1))
plot(pcdffinal[,1:2],col=(pccomp.km$cluster+1),main=paste('K-Means Clustering result with k = ', k,sep=" "),pch=20,cex=2)
points(pccomp.km$centers, pch=15,cex=2)#plotting the centres of the cluster as black squares
dev.off()
png(paste0('kmeans_fviz_',k, '.png'))
print(fviz_cluster(pccomp.km, data = pcdffinal, frame.type = "convex")+ theme_minimal())
dev.off()
df.num_kmeans<-df.num
df.num_kmeans$cluster.kmeans <- pccomp.km$cluster# is a vector of cluster assignment from kmeans() added as a column to the original dataset as
saveRDS(pccomp.km, paste0("kmeans_model_", k, ".RDS"))
write.csv(df.num_kmeans,paste0("dfnum_kmeans_", k, ".cluster.csv"))
png(paste0('clusplot_',k, '.png'))
clusplot(df.num_kmeans,pccomp.km$cluster,color = TRUE,shade=TRUE,labels = 2,lines = 0)
dev.off()
png(paste0('autoplot_',k, '.png'))
print(autoplot(pccomp.km, data=pcdffinal, frame=TRUE,frame.type='norm'))
dev.off()
}
After fitting a Tree with party::ctree() I want to create a table to characterise the branches.
I have fitted these variables
> summary(juridicos_segmentar)
actividad_economica
Financieras : 89
Gubernamental : 48
Sector Primario : 34
Sector Secundario:596
Sector Terciario :669
ingresos_cut
(-Inf,1.03e+08] :931
(1.03e+08,4.19e+08]:252
(4.19e+08,1.61e+09]:144
(1.61e+09, Inf] :109
egresos_cut
(-Inf,6e+07] :922
(6e+07,2.67e+08] :256
(2.67e+08,1.03e+09]:132
(1.03e+09, Inf] :126
patrimonio_cut
(-Inf,2.72e+08] :718
(2.72e+08,1.46e+09]:359
(1.46e+09,5.83e+09]:191
(5.83e+09, Inf] :168
op_ingreso_cut
(-Inf,3] :1308
(3,7] : 53
(7,22] : 44
(22, Inf]: 31
The first one is categorical and the others are ordinal and I fitted them to
another factor variable
> summary(as.factor(segmento))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
27 66 30 39 36 33 39 15 84 70 271 247 101 34 100 74 47 25 48 50
I used the following code
library(party)
fit_jur <- ctree(cluster ~ .,
data=data.frame(juridicos_segmentar, cluster=as.factor(segmento)))
to get this tree
> fit_jur
Conditional inference tree with 31 terminal nodes
Response: cluster
Inputs: actividad_economica, ingresos_cut, egresos_cut, patrimonio_cut, op_ingreso_cut
Number of observations: 1436
1) actividad_economica == {Financieras}; criterion = 1, statistic = 4588.487
2) ingresos_cut <= (4.19e+08,1.61e+09]; criterion = 1, statistic = 62.896
3) egresos_cut <= (6e+07,2.67e+08]; criterion = 1, statistic = 22.314
4)* weights = 70
3) egresos_cut > (6e+07,2.67e+08]
5)* weights = 10
2) ingresos_cut > (4.19e+08,1.61e+09]
6)* weights = 9
plot of part of the tree
What I want is a table where every row is a path from the node to a leaf saying the prediction of the variable segmento and every column is the condition on the variable to split. Something alike this:
actividad economica ingresos (rango) egresos (rango) patrimonio (rango) operaciones de ingreso segmento
Sector Primario <=261.000.000 18
Sector Primario >261.000.000 20
The problem is there are several leaves to characterise and some time a variable appears several times in one path so I'd like to intersect the conditions, i.e. intersecting the ranges.
I've thought of data.tree::ToDataFrameTable but I've got no idea of how it works with party.
Thank you very much guys!
library(partykit)
fit_jur <- ctree(cluster ~ .,
data=data.frame(juridicos_segmentar, cluster=as.factor(segmento)))
pathpred <- function(object, ...)
{
## coerce to "party" object if necessary
if(!inherits(object, "party")) object <- as.party(object)
## get standard predictions (response/prob) and collect in data frame
rval <- data.frame(response = predict(object, type = "response", ...))
rval$prob <- predict(object, type = "prob", ...)
## get rules for each node
rls <- partykit:::.list.rules.party(object)
## get predicted node and select corresponding rule
rval$rule <- rls[as.character(predict(object, type = "node", ...))]
return(rval)
}
ct_pred_jur <- unique(pathpred(fit_jur)[c(1,3)])
write.csv2(ct_pred_jur,'parametrizacion_juridicos.csv')
thank you Achim Zeileis for pointing me in this direction, I couldn't intersect the rules in a same variable, i.e. evaluate the '&s'. That problem is still open.
You can convert both party class (from partykit) and BinaryTree (from party) to a data.tree, and use it for conversion to data frame and/or printing. For example like this:
library(party)
airq <- subset(airquality, !is.na(Ozone))
airct <- ctree(Ozone ~ ., data = airq,
controls = ctree_control(maxsurrogate = 3))
tree <- as.Node(airct)
df <- ToDataFrameTable(tree,
"pathString",
"label",
criterion = function(x) round(x$criterion$maxcriterion, 3),
statistic = function(x) round(max(x$criterion$statistic), 3)
)
df
This will print like so:
pathString label criterion statistic
1 1/2/3 weights = 10 0.000 0.000
2 1/2/4/5 weights = 48 0.936 6.141
3 1/2/4/6 weights = 21 0.891 5.182
4 1/7/8 weights = 30 0.675 3.159
5 1/7/9 weights = 7 0.000 0.000
Plotting:
#print subtree
subtree <- Clone(tree$`2`)
SetNodeStyle(subtree,
style = "filled,rounded",
shape = "box",
fillcolor = "GreenYellow",
fontname = "helvetica",
label = function(x) x$label,
tooltip = function(x) round(x$criterion$maxcriterion, 3))
plot(subtree)
And the result will look like this:
I am trying to use code for fully reproducible parallel models in caret but do not understand how to set the size of the vectors in the seed object. For gbm I have 4 tuning parameters with a total of 11 different levels, and I have 54 rows in my tuning grid. If I specify any value < 18 as the last value in the "for(i in 1:10)" line below, I get an error: "Bad seeds: the seed object should be a list of length 11 with 10 integer vectors of size 18 and the last list element having a single integer." Why 18? Also it runs without errors for values > 18 (e.g., 54) - why? Many thanks for the help. The following is based on http://topepo.github.io/caret/training.html, added some things.
library(mlbench)
data(Sonar)
str(Sonar[, 1:10])
library(caret)
library(doParallel)
set.seed(998)
inTraining <- createDataPartition(Sonar$Class, p = .75, list = FALSE)
training <- Sonar[ inTraining,]
testing <- Sonar[-inTraining,]
grid <- expand.grid(n.trees = seq(50,150,by=50), interaction.depth = seq(1,3,by=1),
shrinkage = seq(.09,.11,by=.01),n.minobsinnode=seq(8,10,by=2))
# set seed to run fully reproducible model in parallel mode using caret
set.seed(825)
seeds <- vector(mode = "list", length = 11) # length is = (n_repeats*nresampling)+1
for(i in 1:10) seeds[[i]]<- sample.int(n=1000, 11) # ...the number of tuning parameter...
seeds[[11]]<-sample.int(1000, 1) # for the last model
fitControl <- trainControl(method = "cv",number = 10,seeds=seeds)
# run model in parallel
cl <- makeCluster(detectCores())
registerDoParallel(cl)
gbmFit1 <- train(Class ~ ., data = training,method = "gbm",
trControl = fitControl,tuneGrid=grid,verbose = FALSE)
gbmFit1
I will address your question in two parts:
1 - Setting the seeds:
The code to do it as you stated :
set.seed(825)
seeds <- vector(mode = "list", length = 11)
for(i in 1:10) seeds[[i]]<- sample.int(n=1000, 54)
#for the last model
seeds[[11]]<-sample.int(1000, 1)
The 11 in seeds <- vector(mode = "list", length = 11) is (n_repeats*nresampling)+1, so in your case, you're using 10-fold CV, so 10+1 = 11. If you were using repeatedcv with number=10 and repeats = 5 you would replace the 11 by (5*10)+1 = 51.
The 10 in for(i in 1:10) is (n_repeats*nresampling). in your case it is 10 because you're using 10-fold CV. Similarly, if you were using repeatedcv with number=10 and repeats = 5 it would be for(i in 1:50).
The 54 in sample.int(n=1000, 54) is the number of tuning parameter combinations. In your case, you have 4 parameters with 3,3,3 and 2 values. So, it is 3*3*3*2 = 54. But, I remember I red somewhere that for gbm, the model is fit to the max(n.trees) in the grid, and the models with less trees are derived from it, this explains why caret calculates the seeds based on the interaction.depth * shrinkage * n.minobsinnode in your case 3 * 3 * 2 = 18 and not 3*3*3*2 = 54 as we will see later.
But if you were using a SVM model with a grid svmGrid <- expand.grid(sigma= 2^c(-25, -20, -15,-10, -5, 0), C= 2^c(0:5)) your value is 6 * 6 = 36
Remember, the goal of using seeds is to allow reproducible research by setting the seeds for the models fit at each resampling iteration.
The seeds[[11]]<-sample.int(1000, 1) is used to set the seed for the last (optimum) model fit to the complete dataset.
2 - Why you get an error if you specify a value < 18, but no error with a value >= 18
I was able to reproduce the same error on my machine:
Error in train.default(x, y, weights = w, ...) :
Bad seeds: the seed object should be a list of length 11 with 10 integer vectors of size 18 and the last list element having a single integer
So, by inspecting the train.default I was able to find its source. The error message is triggered by the stop in lines 7 to 10 based on the test badSeed in lines 4 and 5.
else {
if (!(length(trControl$seeds) == 1 && is.na(trControl$seeds))) {
numSeeds <- unlist(lapply(trControl$seeds, length))
4 badSeed <- (length(trControl$seeds) < length(trControl$index) +
5 1) || (any(numSeeds[-length(numSeeds)] < nrow(trainInfo$loop)))
if (badSeed)
7 stop(paste("Bad seeds: the seed object should be a list of length",
8 length(trControl$index) + 1, "with", length(trControl$index),
9 "integer vectors of size", nrow(trainInfo$loop),
10 "and the last list element having a", "single integer"))
}
}
The number 18 is coming from nrow(trainInfo$loop), so we need to find the value of trainInfo$loop. The object trainInfo is assigned a value trainInfo <- models$loop(tuneGrid) in line 3:
if (trControl$method != "none") {
if (is.function(models$loop) && nrow(tuneGrid) > 1) {
3 trainInfo <- models$loop(tuneGrid)
if (!all(c("loop", "submodels") %in% names(trainInfo)))
stop("The 'loop' function should produce a list with elements 'loop' and 'submodels'")
}
Now, we need to find the object models. It is assigned the value of models <- getModelInfo(method, regex = FALSE)[[1]] in line 2:
else {
2 models <- getModelInfo(method, regex = FALSE)[[1]]
if (length(models) == 0)
stop(paste("Model", method, "is not in caret's built-in library"))
}
Since we are using method = "gbm", we can see the value of getModelInfo("gbm", regex = FALSE)[[1]]$loop and inspect the result below:
> getModelInfo("gbm", regex = FALSE)[[1]]$loop
function(grid) {
3 loop <- ddply(grid, c("shrinkage", "interaction.depth", "n.minobsinnode"),
function(x) c(n.trees = max(x$n.trees)))
submodels <- vector(mode = "list", length = nrow(loop))
for(i in seq(along = loop$n.trees)) {
index <- which(grid$interaction.depth == loop$interaction.depth[i] &
grid$shrinkage == loop$shrinkage[i] &
grid$n.minobsinnode == loop$n.minobsinnode[i])
trees <- grid[index, "n.trees"]
submodels[[i]] <- data.frame(n.trees = trees[trees != loop$n.trees[i]])
}
list(loop = loop, submodels = submodels)
}
>
The loop (in line 3 above) is assigned the value:
loop <- ddply(grid, c("shrinkage", "interaction.depth", "n.minobsinnode"),
function(x) c(n.trees = max(x$n.trees)))`
Now, let's pass your grid with 54 rows to the line above and inspect the result:
> nrow(grid)
[1] 54
>
> loop <- ddply(grid, c("shrinkage", "interaction.depth", "n.minobsinnode"),
+ function(x) c(n.trees = max(x$n.trees)))
> loop
shrinkage interaction.depth n.minobsinnode n.trees
1 0.09 1 8 150
2 0.09 1 10 150
3 0.09 2 8 150
4 0.09 2 10 150
5 0.09 3 8 150
6 0.09 3 10 150
7 0.10 1 8 150
8 0.10 1 10 150
9 0.10 2 8 150
10 0.10 2 10 150
11 0.10 3 8 150
12 0.10 3 10 150
13 0.11 1 8 150
14 0.11 1 10 150
15 0.11 2 8 150
16 0.11 2 10 150
17 0.11 3 8 150
18 0.11 3 10 150
>
ahh!, we found it. The value 18 is coming from nrow(trainInfo$loop) which is coming from getModelInfo("gbm", regex = FALSE)[[1]]$loop shown above with just 18 rows.
Now, going back to the test that triggered the error:
badSeed <- (length(trControl$seeds) < length(trControl$index) +
1) || (any(numSeeds[-length(numSeeds)] < nrow(trainInfo$loop)))
The first part of the test (length(trControl$seeds) < length(trControl$index) + 1) is FALSE, but the second part (any(numSeeds[-length(numSeeds)] < nrow(trainInfo$loop))) is TRUE for all valuse less that 18 [coming from nrow(trainInfo$loop)], and FALSE for all valuse greater than 18. That's why the error is triggered for a value <18 and not for >=18. As I said above, the caret's calculates the seeds based on the interaction.depth * shrinkage * n.minobsinnode in your case 3 * 3 * 2 = 18 (a model is fit to the max(n.trees) and the others are derived from it, so there is no need for 54 integers).