Ordering data frame using variable as column name - r

I have a couple of data frames that I want to be ordered by its last column respectively, I've been trying since a while but nothing succeeds, the main idea is to create a function to avoid doing this over and over for each data frame, the function I'm building is this:
order_dataF = function(x){
tCol = colnames(x[length(x)])
print(tCol)
#x <- x[with(x, order(-tCol),)]
#x <- x[with(x, order(-(paste(tCol))),)]
#x[do.call( order, x[,match(tCol,names(x))]),]
#x <- x[order(x$tCol),]
}
All the lines that have a comment on it are the ones I tested none of this are working as expected, I know this is because order needs the column name instead the variable I'm giving.
tCol always always bring to me the last column name, when I run this function this is the result:
[1] "TotalSearches"
Error in -(paste(tCol)) : invalid argument to unary operator
Calls: main ... [.data.frame -> with -> with.default -> eval -> eval -> order
Execution halted
I'm printing tCol to see if this is really containing the last column name, in this case, indeed it does have exactly what I need.
Perhaps this is a silly question/problem and it's too easy to solve but I cannot move forward as this is slowing me down, I'm frustrated.
Also I'm seeing this looks like duplicated but is not, nobody is being asking the right question (perhaps not even me) but the idea is "Order my the content of a string variable which is obtained from the data frame column names"

Generally, don't try to use with (or other "nonstandard" evaluation functions like subset) inside functions.
order_by_last_col = function(df) {
df[order(df[, ncol(df)]), ]
}
# test
order_by_last_col(mtcars)
If using column names stored as character strings, you must use [, not $, because $ is also a non-standard evaluation shortcut, and it never evaluates the code that comes after $, it just looks for a column with that exact name. If you'd rather use names than indices (like above), do it this way with [:
order_by_last_col = function(df) {
last_col_name = tail(names(df), 1)
df[order(df[, last_col_name]), ]
}
Edit: Just a few more experiments to see why your initial attempts didn't work. they don't need to be in a function to not work, they just never work.
col = "wt"
mtcars$col # NULL
with(mtcars, head(col)) # "wt"
mtcars[, match(col, names(mtcars))] # this does work but is unnecessarily long
mtcars[, col] # works, easy
mtcars[[col]] # also works

Related

Behaviour of keep.rownames in R data.table::setDT()

I was just trying some code with data.table (library(data.table)) and noticed behaviour I found odd. Why does the first code here put rownames into the rn variable, while the second snippet doesn't? I am curious as to why this is happening. I would have thought the copy() and assign are done before the setDT() so it shouldn't have to be performed in two separate steps.
Keeps rownames:
dtcars <- copy(mtcars)
setDT(dtcars, keep.rownames=TRUE)
Does not keep rownames:
setDT(dtcars <- copy(mtcars), keep.rownames=TRUE)
I even tried with the assignment expressed as a function to make sure that was run first with
setDT(`<-`(dtcars, copy(mtcars)), keep.rownames=TRUE)
Compare this to the following where x is assigned before the call to mean() — I would expect my second snippet to behave like this but if the following behaved like my second snippet it would return NA.
mean(x <- c(rnorm(10, 0, 1), NA), na.rm=TRUE)
As you know, the <- operator is parsed to a function call (to the `<-` function) in R. What you don't seem to be aware of is that each function has a return value (even if it is just NULL and invisible).
The `<-` function has the side effect of assigning a value to a symbol. Its (invisible) return value is the value that is assigned. That's why you can do stuff like y <- x <- 1.
In your second and third example, setDT gets passed the return value of `<-`, which is a data.frame but not bound to a symbol. However, you want to pass it the symbol dtcars, which is what happens in your first example.
Since the return value is a shallow copy of the assigned data.frame, the assigned data.frame is also turned into a data.table. However, I don't understand C sufficiently to understand (from the source code) why adding the rn column to the return value doesn't also add it to the assigned data.table. I suggest submitting an issue.

How do you solve "could not find function "deparse<-" | "as.name<-" | "eval<-"" errors when trying to dynamically name dataframes in R? [duplicate]

I am using R to parse a list of strings in the form:
original_string <- "variable_name=variable_value"
First, I extract the variable name and value from the original string and convert the value to numeric class.
parameter_value <- as.numeric("variable_value")
parameter_name <- "variable_name"
Then, I would like to assign the value to a variable with the same name as the parameter_name string.
variable_name <- parameter_value
What is/are the function(s) for doing this?
assign is what you are looking for.
assign("x", 5)
x
[1] 5
but buyer beware.
See R FAQ 7.21
http://cran.r-project.org/doc/FAQ/R-FAQ.html#How-can-I-turn-a-string-into-a-variable_003f
You can use do.call:
do.call("<-",list(parameter_name, parameter_value))
There is another simple solution found there:
http://www.r-bloggers.com/converting-a-string-to-a-variable-name-on-the-fly-and-vice-versa-in-r/
To convert a string to a variable:
x <- 42
eval(parse(text = "x"))
[1] 42
And the opposite:
x <- 42
deparse(substitute(x))
[1] "x"
The function you are looking for is get():
assign ("abc",5)
get("abc")
Confirming that the memory address is identical:
getabc <- get("abc")
pryr::address(abc) == pryr::address(getabc)
# [1] TRUE
Reference: R FAQ 7.21 How can I turn a string into a variable?
Use x=as.name("string"). You can use then use x to refer to the variable with name string.
I don't know, if it answers your question correctly.
strsplit to parse your input and, as Greg mentioned, assign to assign the variables.
original_string <- c("x=123", "y=456")
pairs <- strsplit(original_string, "=")
lapply(pairs, function(x) assign(x[1], as.numeric(x[2]), envir = globalenv()))
ls()
assign is good, but I have not found a function for referring back to the variable you've created in an automated script. (as.name seems to work the opposite way). More experienced coders will doubtless have a better solution, but this solution works and is slightly humorous perhaps, in that it gets R to write code for itself to execute.
Say I have just assigned value 5 to x (var.name <- "x"; assign(var.name, 5)) and I want to change the value to 6. If I am writing a script and don't know in advance what the variable name (var.name) will be (which seems to be the point of the assign function), I can't simply put x <- 6 because var.name might have been "y". So I do:
var.name <- "x"
#some other code...
assign(var.name, 5)
#some more code...
#write a script file (1 line in this case) that works with whatever variable name
write(paste0(var.name, " <- 6"), "tmp.R")
#source that script file
source("tmp.R")
#remove the script file for tidiness
file.remove("tmp.R")
x will be changed to 6, and if the variable name was anything other than "x", that variable will similarly have been changed to 6.
I was working with this a few days ago, and noticed that sometimes you will need to use the get() function to print the results of your variable.
ie :
varnames = c('jan', 'feb', 'march')
file_names = list_files('path to multiple csv files saved on drive')
assign(varnames[1], read.csv(file_names[1]) # This will assign the variable
From there, if you try to print the variable varnames[1], it returns 'jan'.
To work around this, you need to do
print(get(varnames[1]))
If you want to convert string to variable inside body of function, but you want to have variable global:
test <- function() {
do.call("<<-",list("vartest","xxx"))
}
test()
vartest
[1] "xxx"
Maybe I didn't understand your problem right, because of the simplicity of your example. To my understanding, you have a series of instructions stored in character vectors, and those instructions are very close to being properly formatted, except that you'd like to cast the right member to numeric.
If my understanding is right, I would like to propose a slightly different approach, that does not rely on splitting your original string, but directly evaluates your instruction (with a little improvement).
original_string <- "variable_name=\"10\"" # Your original instruction, but with an actual numeric on the right, stored as character.
library(magrittr) # Or library(tidyverse), but it seems a bit overkilled if the point is just to import pipe-stream operator
eval(parse(text=paste(eval(original_string), "%>% as.numeric")))
print(variable_name)
#[1] 10
Basically, what we are doing is that we 'improve' your instruction variable_name="10" so that it becomes variable_name="10" %>% as.numeric, which is an equivalent of variable_name=as.numeric("10") with magrittr pipe-stream syntax. Then we evaluate this expression within current environment.
Hope that helps someone who'd wander around here 8 years later ;-)
Other than assign, one other way to assign value to string named object is to access .GlobalEnv directly.
# Equivalent
assign('abc',3)
.GlobalEnv$'abc' = 3
Accessing .GlobalEnv gives some flexibility, and my use case was assigning values to a string-named list. For example,
.GlobalEnv$'x' = list()
.GlobalEnv$'x'[[2]] = 5 # works
var = 'x'
.GlobalEnv[[glue::glue('{var}')]][[2]] = 5 # programmatic names from glue()

How to name an object out of a string in R [duplicate]

I am using R to parse a list of strings in the form:
original_string <- "variable_name=variable_value"
First, I extract the variable name and value from the original string and convert the value to numeric class.
parameter_value <- as.numeric("variable_value")
parameter_name <- "variable_name"
Then, I would like to assign the value to a variable with the same name as the parameter_name string.
variable_name <- parameter_value
What is/are the function(s) for doing this?
assign is what you are looking for.
assign("x", 5)
x
[1] 5
but buyer beware.
See R FAQ 7.21
http://cran.r-project.org/doc/FAQ/R-FAQ.html#How-can-I-turn-a-string-into-a-variable_003f
You can use do.call:
do.call("<-",list(parameter_name, parameter_value))
There is another simple solution found there:
http://www.r-bloggers.com/converting-a-string-to-a-variable-name-on-the-fly-and-vice-versa-in-r/
To convert a string to a variable:
x <- 42
eval(parse(text = "x"))
[1] 42
And the opposite:
x <- 42
deparse(substitute(x))
[1] "x"
The function you are looking for is get():
assign ("abc",5)
get("abc")
Confirming that the memory address is identical:
getabc <- get("abc")
pryr::address(abc) == pryr::address(getabc)
# [1] TRUE
Reference: R FAQ 7.21 How can I turn a string into a variable?
Use x=as.name("string"). You can use then use x to refer to the variable with name string.
I don't know, if it answers your question correctly.
strsplit to parse your input and, as Greg mentioned, assign to assign the variables.
original_string <- c("x=123", "y=456")
pairs <- strsplit(original_string, "=")
lapply(pairs, function(x) assign(x[1], as.numeric(x[2]), envir = globalenv()))
ls()
assign is good, but I have not found a function for referring back to the variable you've created in an automated script. (as.name seems to work the opposite way). More experienced coders will doubtless have a better solution, but this solution works and is slightly humorous perhaps, in that it gets R to write code for itself to execute.
Say I have just assigned value 5 to x (var.name <- "x"; assign(var.name, 5)) and I want to change the value to 6. If I am writing a script and don't know in advance what the variable name (var.name) will be (which seems to be the point of the assign function), I can't simply put x <- 6 because var.name might have been "y". So I do:
var.name <- "x"
#some other code...
assign(var.name, 5)
#some more code...
#write a script file (1 line in this case) that works with whatever variable name
write(paste0(var.name, " <- 6"), "tmp.R")
#source that script file
source("tmp.R")
#remove the script file for tidiness
file.remove("tmp.R")
x will be changed to 6, and if the variable name was anything other than "x", that variable will similarly have been changed to 6.
I was working with this a few days ago, and noticed that sometimes you will need to use the get() function to print the results of your variable.
ie :
varnames = c('jan', 'feb', 'march')
file_names = list_files('path to multiple csv files saved on drive')
assign(varnames[1], read.csv(file_names[1]) # This will assign the variable
From there, if you try to print the variable varnames[1], it returns 'jan'.
To work around this, you need to do
print(get(varnames[1]))
If you want to convert string to variable inside body of function, but you want to have variable global:
test <- function() {
do.call("<<-",list("vartest","xxx"))
}
test()
vartest
[1] "xxx"
Maybe I didn't understand your problem right, because of the simplicity of your example. To my understanding, you have a series of instructions stored in character vectors, and those instructions are very close to being properly formatted, except that you'd like to cast the right member to numeric.
If my understanding is right, I would like to propose a slightly different approach, that does not rely on splitting your original string, but directly evaluates your instruction (with a little improvement).
original_string <- "variable_name=\"10\"" # Your original instruction, but with an actual numeric on the right, stored as character.
library(magrittr) # Or library(tidyverse), but it seems a bit overkilled if the point is just to import pipe-stream operator
eval(parse(text=paste(eval(original_string), "%>% as.numeric")))
print(variable_name)
#[1] 10
Basically, what we are doing is that we 'improve' your instruction variable_name="10" so that it becomes variable_name="10" %>% as.numeric, which is an equivalent of variable_name=as.numeric("10") with magrittr pipe-stream syntax. Then we evaluate this expression within current environment.
Hope that helps someone who'd wander around here 8 years later ;-)
Other than assign, one other way to assign value to string named object is to access .GlobalEnv directly.
# Equivalent
assign('abc',3)
.GlobalEnv$'abc' = 3
Accessing .GlobalEnv gives some flexibility, and my use case was assigning values to a string-named list. For example,
.GlobalEnv$'x' = list()
.GlobalEnv$'x'[[2]] = 5 # works
var = 'x'
.GlobalEnv[[glue::glue('{var}')]][[2]] = 5 # programmatic names from glue()

R: passing by parameter to function and using apply instead of nested loop and recursive indexing failed

I have two lists of lists. humanSplit and ratSplit. humanSplit has element of the form::
> humanSplit[1]
$Fetal_Brain_408_AGTCAA_L001_R1_report.txt
humanGene humanReplicate alignment RNAtype
66 DGKI Fetal_Brain_408_AGTCAA_L001_R1_report.txt 6 reg
68 ARFGEF2 Fetal_Brain_408_AGTCAA_L001_R1_report.txt 5 reg
If you type humanSplit[[1]], it gives the data without name $Fetal_Brain_408_AGTCAA_L001_R1_report.txt
RatSplit is also essentially similar to humanSplit with difference in column order. I want to apply fisher's test to every possible pairing of replicates from humanSplit and ratSplit. Now I defined the following empty vector which I will use to store the informations of my fisher's test
humanReplicate <- vector(mode = 'character', length = 0)
ratReplicate <- vector(mode = 'character', length = 0)
pvalue <- vector(mode = 'numeric', length = 0)
For fisher's test between two replicates of humanSplit and ratSplit, I define the following function. In the function I use `geneList' which is a data.frame made by reading a file and has form:
> head(geneList)
human rat
1 5S_rRNA 5S_rRNA
2 5S_rRNA 5S_rRNA
Now here is the main function, where I use a function getGenetype which I already defined in other part of the code. Also x and y are integers :
fishertest <-function(x,y) {
ratReplicateName <- names(ratSplit[x])
humanReplicateName <- names(humanSplit[y])
## merging above two based on the one-to-one gene mapping as in geneList
## defined above.
mergedHumanData <-merge(geneList,humanSplit[[y]], by.x = "human", by.y = "humanGene")
mergedRatData <- merge(geneList, ratSplit[[x]], by.x = "rat", by.y = "ratGene")
## [here i do other manipulation with using already defined function
## getGenetype that is defined outside of this function and make things
## necessary to define following contingency table]
contingencyTable <- matrix(c(HnRn,HnRy,HyRn,HyRy), nrow = 2)
fisherTest <- fisher.test(contingencyTable)
humanReplicate <- c(humanReplicate,humanReplicateName )
ratReplicate <- c(ratReplicate,ratReplicateName )
pvalue <- c(pvalue , fisherTest$p)
}
After doing all this I do the make matrix eg to use in apply. Here I am basically trying to do something similar to double for loop and then using fisher
eg <- expand.grid(i = 1:length(ratSplit),j = 1:length(humanSplit))
junk = apply(eg, 1, fishertest(eg$i,eg$j))
Now the problem is, when I try to run, it gives the following error when it tries to use function fishertest in apply
Error in humanSplit[[y]] : recursive indexing failed at level 3
Rstudio points out problem in following line:
mergedHumanData <-merge(geneList,humanSplit[[y]], by.x = "human", by.y = "humanGene")
Ultimately, I want to do the following:
result <- data.frame(humanReplicate,ratReplicate, pvalue ,alternative, Conf.int1, Conf.int2, oddratio)
I am struggling with these questions:
In defining fishertest function, how should I pass ratSplit and humanSplit and already defined function getGenetype?
And how I should use apply here?
Any help would be much appreciated.
Up front: read ?apply. Additionally, the first three hits on google when searching for "R apply tutorial" are helpful snippets: one, two, and three.
Errors in fishertest()
The error message itself has nothing to do with apply. The reason it got as far as it did is because the arguments you provided actually resolved. Try to do eg$i by itself, and you'll see that it is returning a vector: the corresponding column in the eg data.frame. You are passing this vector as an index in the i argument. The primary reason your function erred out is because double-bracket indexing ([[) only works with singles, not vectors of length greater than 1. This is a great example of where production/deployed functions would need type-checking to ensure that each argument is a numeric of length 1; often not required for quick code but would have caught this mistake. Had it not been for the [[ limit, your function may have returned incorrect results. (I've been bitten by that many times!)
BTW: your code is also incorrect in its scoped access to pvalue, et al. If you make your function return just the numbers you need and the aggregate it outside of the function, your life will simplify. (pvalue <- c(pvalue, ...) will find pvalue assigned outside the function but will not update it as you want. You are defeating one purpose of writing this into a function. When thinking about writing this function, try to answer only this question: "how do I compare a single rat record with a single human record?" Only after that works correctly and simply without having to overwrite variables in the parent environment should you try to answer the question "how do I apply this function to all pairs and aggregate it?" Try very hard to have your function not change anything outside of its own environment.
Errors in apply()
Had your function worked properly despite these errors, you would have received the following error from apply:
apply(eg, 1, fishertest(eg$i, eg$j))
## Error in match.fun(FUN) :
## 'fishertest(eg$i, eg$j)' is not a function, character or symbol
When you call apply in this sense, it it parsing the third argument and, in this example, evaluates it. Since it is simply a call to fishertest(eg$i, eg$j) which is intended to return a data.frame row (inferred from your previous question), it resolves to such, and apply then sees something akin to:
apply(eg, 1, data.frame(...))
Now that you see that apply is being handed a data.frame and not a function.
The third argument (FUN) needs to be a function itself that takes as its first argument a vector containing the elements of the row (1) or column (2) of the matrix/data.frame. As an example, consider the following contrived example:
eg <- data.frame(aa = 1:5, bb = 11:15)
apply(eg, 1, mean)
## [1] 6 7 8 9 10
# similar to your use, will not work; this error comes from mean not getting
# any arguments, your error above is because
apply(eg, 1, mean())
## Error in mean.default() : argument "x" is missing, with no default
Realize that mean is a function itself, not the return value from a function (there is more to it, but this definition works). Because we're iterating over the rows of eg (because of the 1), the first iteration takes the first row and calls mean(c(1, 11)), which returns 6. The equivalent of your code here is mean()(c(1, 11)) will fail for a couple of reasons: (1) because mean requires an argument and is not getting, and (2) regardless, it does not return a function itself (in a "functional programming" paradigm, easy in R but uncommon for most programmers).
In the example here, mean will accept a single argument which is typically a vector of numerics. In your case, your function fishertest requires two arguments (templated by my previous answer to your question), which does not work. You have two options here:
Change your fishertest function to accept a single vector as an argument and parse the index numbers from it. Bothing of the following options do this:
fishertest <- function(v) {
x <- v[1]
y <- v[2]
ratReplicateName <- names(ratSplit[x])
## ...
}
or
fishertest <- function(x, y) {
if (missing(y)) {
y <- x[2]
x <- x[1]
}
ratReplicateName <- names(ratSplit[x])
## ...
}
The second version allows you to continue using the manual form of fishertest(1, 57) while also allowing you to do apply(eg, 1, fishertest) verbatim. Very readable, IMHO. (Better error checking and reporting can be used here, I'm just providing a MWE.)
Write an anonymous function to take the vector and split it up appropriately. This anonymous function could look something like function(ii) fishertest(ii[1], ii[2]). This is typically how it is done for functions that either do not transform as easily as in #1 above, or for functions you cannot or do not want to modify. You can either assign this intermediary function to a variable (which makes it no longer anonymous, figure that) and pass that intermediary to apply, or just pass it directly to apply, ala:
.func <- function(ii) fishertest(ii[1], ii[2])
apply(eg, 1, .func)
## equivalently
apply(eg, 1, function(ii) fishertest(ii[1], ii[2]))
There are two reasons why many people opt to name the function: (1) if the function is used multiple times, better to define once and reuse; (2) it makes the apply line easier to read than if it contained a complex multi-line function definition.
As a side note, there are some gotchas with using apply and family that, if you don't understand, will be confusing. Not the least of which is that when your function returns vectors, the matrix returned from apply will need to be transposed (with t()), after which you'll still need to rbind or otherwise aggregrate.
This is one area where using ddply may provide a more readable solution. There are several tutorials showing it off. For a quick intro, read this; for a more in depth discussion on the bigger picture in which ddply plays a part, read Hadley's Split, Apply, Combine Strategy for Data Analysis paper from JSS.

lapply fail, but function works fine for each individual input arguments

Many thanks in advance for any advices or hints.
I'm working with data frames. The simplified coding is as follows:
`
f<-funtion(name){
x<-tapply(name$a,list(name$b,name$c),sum)
1) y<-dataset[[deparse(substitute(name))]]
#where dataset is an already existed list object with names the same as the
#function argument. I would like to avoid inputting two arguments.
z<-vector("list",n) #where n is also defined already
2) for (i in 1:n){z[[i]]<-x[y[[i]],i]}
...
}
lapply(list_names,f)
`
The warning message is:
In is.na(x) : is.na() applied to non-(list or vector) of type 'NULL'
and the output is incorrect. I tried debugging and found the conflict may lie in line 1) and 2). However, when I try f(name) it is perfectly fine and the output is correct. I guess the problem is in lapply and I searched for a while but could not get to the point. Any ideas? Many thanks!
The structure of the data
Thanks Joran. Checking again I found the problem might not lie in what I had described. I produce the full code as follows and you can copy-paste to see the error.
n<-4
name1<-data.frame(a=rep(0.1,20),b=rep(1:10,each=2),c=rep(1:n,each=5),
d=rep(c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a91"),each=2))
name2<-data.frame(a=rep(0.2,20),b=rep(1:10,each=2),c=rep(1:n,each=5),
d=rep(c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a91"),each=2))
name3<-data.frame(a=rep(0.3,20),b=rep(1:10,each=2),c=rep(1:n,each=5),
d=rep(c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a91"),each=2))
#d is the name for the observations. d corresponds to b.
dataset<-vector("list",3)
names(dataset)<-c("name1","name2","name3")
dataset[[1]]<-list(c(1,2),c(1,2,3,4),c(1,2,3,4,5,10),c(4,5,8))
dataset[[2]]<-list(c(1,2,3,5),c(1,2),c(1,2,10),c(2,3,4,5,8,10))
dataset[[3]]<-list(c(3,5,8,10),c(1,2,5,7),c(1,2,3,4,5),c(2,3,4,6,9))
f<-function(name){
x<-tapply(name$a,list(name$b,name$c),sum)
rownames(x)<-sort(unique(name$d)) #the row names for
y<-dataset[[deparse(substitute(name))]]
z<-vector("list",n)
for (i in 1:n){
z[[i]]<-x[y[[i]],i]}
nn<-length(unique(unlist(sapply(z,names)))) # the number of names appeared
names_<-sort(unique(unlist(sapply(z,names)))) # the names appeared add to the matrix
# below
m<-matrix(,nrow=nn,ncol=n);rownames(m)<-names_
index<-vector("list",n)
for (i in 1:n){
index[[i]]<-match(names(z[[i]]),names_)
m[index[[i]],i]<-z[[i]]
}
return(m)
}
list_names<-vector("list",3)
list_names[[1]]<-name1;list_names[[2]]<-name2;list_names[[3]]<-name3
names(list_names)<-c("name1","name2","name3")
lapply(list_names,f)
f(name1)
the lapply(list_names,f) would fail, but f(name1) will produce exactly the matrix I want. Thanks again.
Why it doesn't work
The issue is the calling stack doesn't look the same in both cases. In lapply, it looks like
[[1]]
lapply(list_names, f) # lapply(X = list_names, FUN = f)
[[2]]
FUN(X[[1L]], ...)
In the expression being evaluated, f is called FUN and its argument name is called X[[1L]].
When you call f directly, the stack is simply
[[1]]
f(name1) # f(name = name1)
Usually this doesn't matter, but with substitute it does because substitute cares about the name of the function argument, not its value. When you get to
y<-dataset[[deparse(substitute(name))]]
inside lapply it's looking for the element in dataset named X[[1L]], and there isn't one, so y is bound to NULL.
A way to get it to work
The simplest way to deal with this is probably to just have f operate on character strings and pass names(list_names) to lapply. This can be accomplished fairly easily by changing the beginning of f to
f<-function(name){
passed.name <- name
name <- list_names[[name]]
x<-tapply(name$a,list(name$b,name$c),sum)
rownames(x)<-sort(unique(name$d)) #the row names for
y<-dataset[[passed.name]]
# the rest of f...
and changing lapply(list_names, f) to lapply(names(list_names),f). This should give you what you want with nearly minimal modification, but you also might consider also renaming some of your variables so the word name isn't used for so many different things--the function names, the argument of f, and all the various variables containing name.

Resources