apply create columns function to a list r - r

I am new in using apply and functions together and I am stuck and frustrated. I have 2 different list of data frames that I need to add certain number of columns to the first one when a condition is fulfill related to the second one. Below this is the structure of the first list that has one data frame for any station and every df has 2 or more columns with each pressure:
> str(KDzlambdaEG)
List of 3
$ 176:'data.frame': 301 obs. of 3 variables:
..$ 0 : num [1:301] 0.186 0.182 0.18 0.181 0.177 ...
..$ 5 : num [1:301] 0.127 0.127 0.127 0.127 0.127 ...
..$ 20: num [1:301] 0.245 0.241 0.239 0.236 0.236 ...
$ 177:'data.frame': 301 obs. of 2 variables:
..$ 0 : num [1:301] 0.132 0.132 0.132 0.13 0.13 ...
..$ 25: num [1:301] 0.09 0.092 0.0902 0.0896 0.0896 ...
$ 199:'data.frame': 301 obs. of 2 variables:
..$ 0 : num [1:301] 0.181 0.182 0.181 0.182 0.179 ...
..$ 10: num [1:301] 0.186 0.186 0.185 0.183 0.184 ...
On the other hand I have the second list that have the number of columns that I need to add after every column on each data frame of the first list :
> str(dif)
List of 3
[[176]]
[1] 4 15 28
[[177]]
[1] 24 67
[[199]]
[1] 9 53
I´ve tried tonnes of things even this, using the append_col function that appear in:
How to add a new column between other dataframe columns?
for (i in 1:length(dif)){
A<-lapply(KDzlambdaEG,append_col,rep(list(NA),dif[[i]][1]),after=1)
}
but nothing seems to work so far... I have searched for answers here but its difficult to find specific ones being a newcomer.

Try:
indxlst <- lapply(dif, function(x) c(1, x[-length(x)]+1, x[length(x)]))
newdflist <- lapply(indxlst, function(x) data.frame(matrix(0, 2, sum(x))))
for(i in 1:length(newdflist)) {
newdflist[[i]][indxlst[[i]]] <- KDzlambdaEG[[i]]
}
Reproducible Data Test
df1 <- data.frame(x=1:2, y=c("Jan", "Feb"), z=c("A", "B"))
df3 <- df2 <- df1[,-3]
KDzlambdaEG <- list(df1,df2,df3)
x1 <- c(4,15,28)
x2 <- c(24,67)
x3 <- c(9, 53)
dif <- list(x1,x2,x3)
indxlst <- lapply(dif, function(x) c(1, x[-length(x)]+1, x[length(x)]))
newdflist <- lapply(indxlst, function(x) data.frame(matrix(0, 2, sum(x))))
for(i in 1:length(newdflist)) {
newdflist[[i]][indxlst[[i]]] <- KDzlambdaEG[[i]]
}
newdflist

Related

Subsetting columns in different positions and with different names in a large list of lists with purrr

I have a large list of lists. There are 46 lists in "output". Each list is a tibble with differing number of rows and columns. My immediate goal is to subset a specific column from each list.
This is str(output) of the first two lists to give you an idea of the data.
> str(output)
List of 46
$ Brain :Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 6108 obs. of 8 variables:
..$ p_val : chr [1:6108] "0" "1.60383253411205E-274" "0" "0" ...
..$ avg_diff : num [1:6108] 1.71 1.7 1.68 1.6 1.58 ...
..$ pct.1 : num [1:6108] 0.998 0.808 0.879 0.885 0.923 0.905 0.951 0.957 0.619 0.985 ...
..$ pct.2 : num [1:6108] 0.677 0.227 0.273 0.323 0.36 0.384 0.401 0.444 0.152 0.539 ...
..$ cluster : num [1:6108] 1 1 1 1 1 1 1 1 1 1 ...
..$ gene : chr [1:6108] "Plp1" "Mal" "Ermn" "Stmn4" ...
..$ X__1 : logi [1:6108] NA NA NA NA NA NA ...
..$ Cell Type: chr [1:6108] "Myelinating oligodendrocyte" NA NA NA ...
$ Bladder :Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 4656 obs. of 8 variables:
..$ p_val : num [1:4656] 0.00 1.17e-233 2.85e-276 0.00 0.00 ...
..$ avg_diff : num [1:4656] 2.41 2.23 2.04 2.01 1.98 ...
..$ pct.1 : num [1:4656] 0.833 0.612 0.855 0.987 1 0.951 0.711 0.544 0.683 0.516 ...
..$ pct.2 : num [1:4656] 0.074 0.048 0.191 0.373 0.906 0.217 0.105 0.044 0.177 0.106 ...
..$ cluster : num [1:4656] 1 1 1 1 1 1 1 1 1 1 ...
..$ gene : chr [1:4656] "Dpt" "Gas1" "Cxcl12" "Lum" ...
..$ X__1 : logi [1:4656] NA NA NA NA NA NA ...
..$ Cell Type: chr [1:4656] "Stromal cell_Dpt high" NA NA NA ...
Since I have a large number of lists that make up the list, I have been trying to create an iterative code to perform tasks. This hasn't been successful.
I can achieve this manually, or list by list, but I haven't been successful in finding an iterative way of doing this.
x <- data.frame(output$Brain, stringsAsFactors = FALSE)
tmp.list <- x$Cell.Type
tmp.output <- purrr::discard(tmp.list, is.na)
x <- subset(x, Cell.Type %in% tmp.output)
This gives me the output that I want, which are the rows in the column "Cell.Type" with non-NA values.
I got as far as the code below to get the 8th column of each list, which is the "Cell.Type" column.
lapply(output, "[", , 8))
But here I found that the naming and positioning of the "Cell.Type" column in each list is not consistent. This means I cannot use the lapply function to subset the 8th columns, as some lists have this on for example the 9th column.
I tried the code below, but it does not work and gets an error.
lapply(output, "[", , c('Cell.Type', 'celltyppe'))
#Error: Column `celltyppe` not found
#Call `rlang::last_error()` to see a backtrace
Essentially, from my "output" list, I want to subset either columns "Cell.Type" or "celltyppe" from each of the 46 lists to create a new list with 46 lists of just a single column of values. Then I want to drop all rows with NA.
I would like to perform this using some sort of loop.
At the moment I have not had much success. Lapply seems to be able to extract columns through lists iterately, and I am having difficultly trying to subset names columns.
Once I can do this, I then want to create a loop that can subset only rows without NA.
FINAL CODE
This is the final code I have used to create exactly what I had hoped for. The first line of the code specifies the loop to go through each list of the large list. The second line of code selects columns of each list that contains "ell" in its name (Cell type, Cell Type, or celltyppe). The last removes any rows with "na".
purrr::map(output, ~ .x %>%
dplyr::select(matches("ell")) %>%
na.omit)
We can use anonymous function call
lapply(output, function(x) na.omit(x[grep("(?i)Cell\\.?(?i)Typp?e", names(x))]))
#[[1]]
# Cell.Type
#1 1
#2 2
#3 3
#4 4
#5 5
#[[2]]
# celltyppe
#1 7
#2 8
#3 9
#4 10
#5 11
Also with purrr
library(tidyverse)
map(output, ~ .x %>%
select(matches("(?i)Cell\\.?(?i)Typp?e") %>%
na.omit))
data
output <- list(data.frame(Cell.Type = 1:5, col1 = 6:10, col2 = 11:15),
data.frame(coln = 1:5, celltyppe = 7:11))

How to split list at every 10th item in R?

I have a list of 100 items.
I want to split it after each 10th item in Code 1.
Code 2 is about a list of two former lists and splitting it to 20 lists of 10 items each.
Code 1
Expected output: ten lists of 10 items.
A <- 100
a <- rnorm(A) # [1:100]
n <- 10
str(a)
# Not resulting in equal size of chunks with vectors so reject
# http://stackoverflow.com/a/3321659/54964
#d <- split(d, ceiling(seq_along(d)/(length(d)/n)))
# Works for vectors but not with lists
# http://stackoverflow.com/a/16275428/54964
#d <- function(d,n) split(d, cut(seq_along(d), n, labels = FALSE))
str(d)
Test code 2
Input: a list of two lists
aa <- list(a, rnorm(a))
Expected output: 20 lists of 10 item size
Testing Loki's answer
segmentLists <- function(A, segmentSize) {
res <- lapply(A, function(x) split(unlist(x), cut(seq_along(unlist(x)), segmentSize, labels = F)))
#print(res)
res <- unlist(res, recursive = F)
}
segmentLists(aa, 10)
Output: loop going on, never stopping
OS: Debian 8.5
R: 3.3.1
you can use lapply.
aa <- list(a, rnorm(a))
aa
n <- 10
x <- lapply(aa, function(x) split(unlist(x), cut(seq_along(unlist(x)), n, labels = F)))
y <- unlist(x, recursive = F)
str(y)
# List of 20
# $ 1 : num [1:10] 1.0895 -0.0477 0.225 -0.6308 -0.1558 ...
# $ 2 : num [1:10] -0.469 -0.381 0.709 -0.798 1.183 ...
# $ 3 : num [1:10] 0.757 -1.128 -1.394 -0.712 0.494 ...
# $ 4 : num [1:10] 1.135 0.324 0.75 -0.83 0.794 ...
# $ 5 : num [1:10] -0.786 -0.068 -0.179 0.354 -0.597 ...
# $ 6 : num [1:10] -0.115 0.164 -0.365 -1.827 -2.036 ...
...
length(y)
# [1] 20
to remove the names of the list elements in y ($ 1, $ 2 etc.) you can use unname()
str(unname(y))
# List of 20
# $ : num [1:10] 1.0895 -0.0477 0.225 -0.6308 -0.1558 ...
# $ : num [1:10] -0.469 -0.381 0.709 -0.798 1.183 ...
# $ : num [1:10] 0.757 -1.128 -1.394 -0.712 0.494 ...
# $ : num [1:10] 1.135 0.324 0.75 -0.83 0.794 ...
# $ : num [1:10] -0.786 -0.068 -0.179 0.354 -0.597 ...
...
Using a function, you have to return res at the end of the function.
segmentLists <- function(A, segmentSize)
{
res <- lapply(A, function(x) split(unlist(x), cut(seq_along(unlist(x)), segmentSize, labels = F)))
#print(res)
res <- unlist(res, recursive = F)
res <- unname(res)
res
}

Accessing dataframes after splitting a dataframe

I'm splitting a dataframe in multiple dataframes using the command
data <- apply(data, 2, function(x) data.frame(sort(x, decreasing=F)))
I don't know how to access them, I know I can access them using df$1 but I have to do that for every dataframe,
df1<- head(data$`1`,k)
df2<- head(data$`2`,k)
can I get these dataframes in one go (like storing them in some form) however the indexes of these multiple dataframes shouldn't change.
str(data) gives
List of 2
$ 7:'data.frame': 7 obs. of 1 variable:
..$ sort.x..decreasing...F.: num [1:7] 0.265 0.332 0.458 0.51 0.52 ...
$ 8:'data.frame': 7 obs. of 1 variable:
..$ sort.x..decreasing...F.: num [1:7] 0.173 0.224 0.412 0.424 0.5 ...
str(data[1:2])
List of 2
$ 7:'data.frame': 7 obs. of 1 variable:
..$ sort.x..decreasing...F.: num [1:7] 0.265 0.332 0.458 0.51 0.52 ...
$ 8:'data.frame': 7 obs. of 1 variable:
..$ sort.x..decreasing...F.: num [1:7] 0.173 0.224 0.412 0.424 0.5 ...
Thanks to #r2evans I got it done, here is his code from the comments
Yes. Two short demos: lapply(data, head, n=2), or more generically
sapply(data, function(df) mean(df$x)). – r2evans
and after that fetching the indexes
df<-lapply(df, rownames)

Subsetting and replacing in a list variable nested in a dataframe

Here is my dataframe example. It includes a column variable, named "dta" which is a single list of n values I want to keep for each of my scenario:
set.seed(777)
df <- data.frame(theo = numeric(),
size = numeric(),
dta = I(list()))
df[ 1: 5,"theo"] <- qlnorm(0.1, meanlog=0, sdlog=1, lower.tail = TRUE, log.p = FALSE)
df[ 6:10,"theo"] <- qlnorm(0.2, meanlog=0, sdlog=1, lower.tail = TRUE, log.p = FALSE)
df[ 1: 5,"size"] <- 10
df[ 6:10,"size"] <- 20
for(i in 1:10){
df$dta[i] <- list(rlnorm(df$size[i], meanlog = 0, sdlog = 1))
}
df
str(df)
This should give a df like:
theo size dta
1 0.2776062 10 1.631967....
2 0.2776062 10 0.737667....
3 0.2776062 10 0.131252....
4 0.2776062 10 1.937334....
5 0.2776062 10 0.739868....
6 0.4310112 20 4.631176....
7 0.4310112 20 2.610180....
8 0.4310112 20 0.175918....
9 0.4310112 20 3.501670....
10 0.4310112 20 0.588178....
or:
'data.frame': 10 obs. of 4 variables:
$ theo: num 0.278 0.278 0.278 0.278 0.278 ...
$ size: num 10 10 10 10 10 20 20 20 20 20
$ dta :List of 10
..$ : num 1.632 0.671 1.667 0.671 5.148 ...
..$ : num 0.738 1.056 0.152 0.967 10.089 ...
..$ : num 0.131 1.256 0.457 3.574 4.211 ...
..$ : num 1.937 2.359 3.496 0.297 4.587 ...
..$ : num 0.74 0.66 0.481 0.434 1.874 ...
..$ : num 4.631 0.298 10.28 0.933 1.286 ...
..$ : num 2.61 0.472 0.251 1.61 0.303 ...
..$ : num 0.176 0.566 2.156 0.407 3.52 ...
..$ : num 3.502 1.748 1.283 0.648 1.359 ...
..$ : num 0.588 0.392 2.447 1.926 0.86 ...
..- attr(*, "class")= chr "AsIs"
Now, I want to subset that list in such a way that:
for each list, each value is compared with the fixed value "theo" stored in the dataframe
when that value is below or equal to "theo", then recode that value NA
Here is a working code and gives me exactly what I want:
df$dta2 <- df$dta
for(i in 1:10){
df$dta2[[i]] [ df$dta2[[i]] <= df$theo[i] ] <- NA
}
However I was wondering is there is a way to get the same result with a single line of code and no "for loop" to proceed with a conditional replacement of values contained in a list which is nested in a dataframe?
We can use Map
df$dta3 <- Map(function(x,y) replace(x, x<=y, NA), df$dta, df$theo)
all.equal(df$dta2, df$dta3, check.attributes=FALSE)
#[1] TRUE

Building a list in a loop in R - getting item names correct

I have a function which contains a loop over two lists and builds up some calculated data. I would like to return these data as a lists of lists, indexed by some value, but I'm getting the assignment wrong.
A minimal example of what I'm trying to do, and where i'm going wrong would be:
mybiglist <- list()
for(i in 1:5){
a <- runif(10)
b <- rnorm(16)
c <- rbinom(8, 5, i/10)
name <- paste('item:',i,sep='')
tmp <- list(uniform=a, normal=b, binomial=c)
mybiglist[[name]] <- append(mybiglist, tmp)
}
If you run this and look at the output mybiglist, you will see that something is going very wrong in the way each item is being named.
Any ideas on how I might achieve what I actually want?
Thanks
ps. I know that in R there is a sense in which one has failed if one has to resort to loops, but in this case I do feel justified ;-)
It works if you don't use the append command:
mybiglist <- list()
for(i in 1:5){
a <- runif(10)
b <- rnorm(16)
c <- rbinom(8, 5, i/10)
name <- paste('item:',i,sep='')
tmp <- list(uniform=a, normal=b, binomial=c)
mybiglist[[name]] <- tmp
}
# List of 5
# $ item:1:List of 3
# ..$ uniform : num [1:10] 0.737 0.987 0.577 0.814 0.452 ...
# ..$ normal : num [1:16] -0.403 -0.104 2.147 0.32 1.713 ...
# ..$ binomial: num [1:8] 0 0 0 0 1 0 0 1
# $ item:2:List of 3
# ..$ uniform : num [1:10] 0.61 0.62 0.49 0.217 0.862 ...
# ..$ normal : num [1:16] 0.945 -0.154 -0.5 -0.729 -0.547 ...
# ..$ binomial: num [1:8] 1 2 2 0 2 1 0 2
# $ item:3:List of 3
# ..$ uniform : num [1:10] 0.66 0.094 0.432 0.634 0.949 ...
# ..$ normal : num [1:16] -0.607 0.274 -1.455 0.828 -0.73 ...
# ..$ binomial: num [1:8] 2 2 3 1 1 1 2 0
# $ item:4:List of 3
# ..$ uniform : num [1:10] 0.455 0.442 0.149 0.745 0.24 ...
# ..$ normal : num [1:16] 0.0994 -0.5332 -0.8131 -1.1847 -0.8032 ...
# ..$ binomial: num [1:8] 2 3 1 1 2 2 2 1
# $ item:5:List of 3
# ..$ uniform : num [1:10] 0.816 0.279 0.583 0.179 0.321 ...
# ..$ normal : num [1:16] -0.036 1.137 0.178 0.29 1.266 ...
# ..$ binomial: num [1:8] 3 4 3 4 4 2 2 3
Change
mybiglist[[name]] <- append(mybiglist, tmp)
to
mybiglist[[name]] <- tmp
To show that an explicit for loop is not required
unif_norm <- replicate(5, list(uniform = runif(10),
normal = rnorm(16)), simplify=F)
binomials <- lapply(seq_len(5)/10, function(prob) {
list(binomial = rbinom(n = 5 ,size = 8, prob = prob))})
biglist <- setNames(mapply(c, unif_norm, binomials, SIMPLIFY = F),
paste0('item:',seq_along(unif_norm)))
In general if you go down the for loop path it is better to preassign the list beforehand. This is more memory efficient.
mybiglist <- vector('list', 5)
names(mybiglist) <- paste0('item:', seq_along(mybiglist))
for(i in seq_along(mybiglist)){
a <- runif(10)
b <- rnorm(16)
c <- rbinom(8, 5, i/10)
tmp <- list(uniform=a, normal=b, binomial=c)
mybiglist[[i]] <- tmp
}

Resources