Adding a New Column with an Increment in R - r

I am trying to add a new column to the beginning of my data frame in R. Right now I have something that looks like
a b c d
1 2 3 4
1 2 3 4
4 1 6 3
and I want to add a new column, z, that adds by 5 in each row to get something like
z a b c d
5 1 2 3 4
10 1 2 3 4
15 4 1 6 3

Try
z<- seq(5, length.out=nrow(df1), by=5)
Or
z <- 5*seq_len(nrow(df1))
cbind(z, df1)
# z a b c d
#1 5 1 2 3 4
#2 10 1 2 3 4
#3 15 4 1 6 3

declare your new z vector by say z <- c(5,10,15) or using another way if it follows a particular pattern. After initialization use the cbind function to merge it with the original dataframe.
cbind(df,z) adds the new vector at the end and cbind(z,df) adds in the beginning. since u want it at the beginning u can use cbind(z,df)

Related

Quick way to use the row element as name and the value as column in R

I do this with some steps that are not at all elegant and safe, but I'm sure that there is a way more easily and fast.
I need a help to know what is a quick way to go from dataframe_1 to dataframe_2.
#from this
a<-c("A","A","B","B","C","C")
b<-c(1,2,12,2,4,5)
dataframe_1<-cbind.data.frame(a,b)
a b
1 A 1
2 A 2
3 B 12
4 B 2
5 C 4
6 C 5
#to this
a<-c(1,2)
b<-c(12,2)
c<-c(4,5)
dataframe_2<-cbind.data.frame(A=a,B=b,C=c)
A B C
1 1 12 4
2 2 2 5
Try unstack
> unstack(rev(dataframe_1))
A B C
1 1 12 4
2 2 2 5
One option IF the number of elements in each group is constant.
data.frame(do.call(cbind, split(dataframe_1$b, dataframe_1$a)))
A B C
1 1 12 4
2 2 2 5
This can be also be done with dcast and rowid from data.table:
dcast(as.data.table(dataframe_1), rowid(a) ~ a, value.var = 'b')[, -1]
A B C
1: 1 12 4
2: 2 2 5
Here, [, -1] removes the first column (which is rowid(a)).

vectorise rows of a dataframe, apply vector function, return to original dataframe r

Given the following df:
a=c('a','b','c')
b=c(1,2,5)
c=c(2,3,4)
d=c(2,1,6)
df=data.frame(a,b,c,d)
a b c d
1 a 1 2 2
2 b 2 3 1
3 c 5 4 6
I'd like to apply a function that normally takes a vector (and returns a vector) like cummax row by row to the columns in position b to d.
Then, I'd like to have the output back in the df, either as a vector in a new column of the df, or replacing the original data.
I'd like to avoid writing it as a for loop that would iterate every row, pull out the content of the cells into a vector, do its thing and put it back.
Is there a more efficient way? I've given the apply family functions a go, but I'm struggling to first get a good way to vectorise content of columns by row and get the right output.
the final output could look something like that (imagining I've applied a cummax() function).
a b c d
1 a 1 2 2
2 b 2 3 3
3 c 5 5 6
or
a b c d output
1 a 1 2 2 (1,2,2)
2 b 2 3 1 (2,3,3)
3 c 5 4 6 (5,5,6)
where output is a vector.
Seems this would just be a simple apply problem that you want to cbind to df:
> cbind(df, apply(df[ , 4:2] # work with columns in reverse order
, 1, # do it row-by-row
cummax) )
a b c d 1 2 3
d a 1 2 2 2 1 6
c b 2 3 1 2 3 6
b c 5 4 6 2 3 6
Ouch. Bitten by failing to notice that this would be returned in a column oriented matrix and need to transpose that result; Such a newbie mistake. But it does show the value of having a question with a reproducible dataset I suppose.
> cbind(df, t(apply(df[ , 4:2] , 1, cummax) ) )
a b c d d c b
1 a 1 2 2 2 2 2
2 b 2 3 1 1 3 3
3 c 5 4 6 6 6 6
To destructively assign the result to df you would just use:
df <- # .... that code.
This does the concatenation with commas (and as a result no longer needs to be transposed:
> cbind(df, output=apply(df[ , 4:2] , 1, function(x) paste( cummax(x), collapse=",") ) )
a b c d output
1 a 1 2 2 2,2,2
2 b 2 3 1 1,3,3
3 c 5 4 6 6,6,6

Divide each rows by a different number

I've looked on the internet but I haven found the answer that I'm looking for, but shure it's out there...
I've a data frame, and I want to divide (or any other operation) every cell of a row by a value that it's placed in the second column of my data frame.
So first row from col3 to last col, divide each cell by the value of col2 of that certain row, and so on for every single row.
I have solved this by using a For loop, col2 (delta) it's now a vector, and col3 to end it's a data.frame (mu). The results are append to a new data frame by using rbind.
The question is; I'm pretty sure that this can be done by using the function apply, sapply or similar, but I have not gotten the results that I've been looking so far (not the good ones as I do with the loop for). ¿How can I do it without using a loop for?
Loop for I've been using so far.
In resume.
I want to divide each mu by the delta value of it's own row.
for (i in 1:(dim(mu)[1])){
RA_row <- mu[i,]/delta[i]
RA <- rbind(RA, RA_row)
}
transcript delta mu_5 mu_15 mu_25 mu_35 mu_45 mu_55 mu_65
1 YAL001C 0.066702720 2.201787e-01 1.175731e-01 2.372506e-01 0.139281317 0.081723456 1.835414e-01 1.678318e-01
2 YAL002W 0.106000180 3.685822e-01 1.326865e-01 2.887973e-01 0.158207858 0.193476082 1.867039e-01 1.776946e-01
3 YAL003W 0.022119345 2.271518e+00 2.390637e+00 1.651997e+00 3.802739732 2.733559839 2.772454e+00 3.571712e+00
Thanks
It appears as though you want just:
mu2 <- mu[-(1:2)]/mu[[2]]
# same as mu[-(1:2), ]/mu[['delta']]
That should produce a new dataframe with the division by row. Somewhat more dangerous would be to do the division "in place".
mu[-(1:2)] <- mu[-(1:2)]/mu[[2]]
> mu <- data.frame(a=1,b=1:10, c=rnorm(10), d=rnorm(10) )
> mu
a b c d
1 1 1 -1.91435943 0.45018710
2 1 2 1.17658331 -0.01855983
3 1 3 -1.66497244 -0.31806837
4 1 4 -0.46353040 -0.92936215
5 1 5 -1.11592011 -1.48746031
6 1 6 -0.75081900 -1.07519230
7 1 7 2.08716655 1.00002880
8 1 8 0.01739562 -0.62126669
9 1 9 -1.28630053 -1.38442685
10 1 10 -1.64060553 1.86929062
> (mu2 <- mu[-(1:2)]/mu[[2]])
c d
1 -1.914359426 0.450187101
2 0.588291656 -0.009279916
3 -0.554990812 -0.106022792
4 -0.115882600 -0.232340537
5 -0.223184021 -0.297492062
6 -0.125136500 -0.179198716
7 0.298166649 0.142861258
8 0.002174452 -0.077658337
9 -0.142922281 -0.153825205
10 -0.164060553 0.186929062
> (mu[-(1:2)] <- mu[-(1:2)]/mu[[2]] )
> mu
a b c d
1 1 1 -1.914359426 0.450187101
2 1 2 0.588291656 -0.009279916
3 1 3 -0.554990812 -0.106022792
4 1 4 -0.115882600 -0.232340537
5 1 5 -0.223184021 -0.297492062
6 1 6 -0.125136500 -0.179198716
7 1 7 0.298166649 0.142861258
8 1 8 0.002174452 -0.077658337
9 1 9 -0.142922281 -0.153825205
10 1 10 -0.164060553 0.186929062

Subseting data frame by another data frame

The data is as follows:
> x
a b
1 1 a
2 2 a
3 3 a
4 1 b
5 2 b
6 3 b
> y
a b
1 2 a
2 3 a
3 3 b
My goal is to compare both data frames, and for each row in x indicate whether equivalent row exists in y. All of the y rows are actually contained in x, so I would like to end up with something like this:
> x
a b intersect.x.y
1 1 a F
2 2 a T
3 3 a T
4 1 b F
5 2 b F
6 3 b T
How about that?
How about this?
x$rn <- 1:nrow(x)
xyrows <- merge(x,y)$rn # maybe you just want to look at the merge ...?
x$iny <- FALSE
x$iny[xyrows] <- TRUE
I suspect there is a more standard approach, but this way is easy to understand.

Calculating the occurrences of numbers in the subsets of a data.frame

I have a data frame in R which is similar to the follows. Actually my real ’df’ dataframe is much bigger than this one here but I really do not want to confuse anybody so that is why I try to simplify things as much as possible.
So here’s the data frame.
id <-c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3)
a <-c(3,1,3,3,1,3,3,3,3,1,3,2,1,2,1,3,3,2,1,1,1,3,1,3,3,3,2,1,1,3)
b <-c(3,2,1,1,1,1,1,1,1,1,1,2,1,3,2,1,1,1,2,1,3,1,2,2,1,3,3,2,3,2)
c <-c(1,3,2,3,2,1,2,3,3,2,2,3,1,2,3,3,3,1,1,2,3,3,1,2,2,3,2,2,3,2)
d <-c(3,3,3,1,3,2,2,1,2,3,2,2,2,1,3,1,2,2,3,2,3,2,3,2,1,1,1,1,1,2)
e <-c(2,3,1,2,1,2,3,3,1,1,2,1,1,3,3,2,1,1,3,3,2,2,3,3,3,2,3,2,1,3)
df <-data.frame(id,a,b,c,d,e)
df
Basically what I would like to do is to get the occurrences of numbers for each column (a,b,c,d,e) and for each id group (1,2,3) (for this latter grouping see my column ’id’).
So, for column ’a’ and for id number ’1’ (for the latter see column ’id’) the code would be something like this:
as.numeric(table(df[1:10,2]))
##The results are:
[1] 3 7
Just to briefly explain my results: in column ’a’ (and regarding only those records which have number ’1’ in column ’id’) we can say that number '1' occured 3 times and number '3' occured 7 times.
Again, just to show you another example. For column ’a’ and for id number ’2’ (for the latter grouping see again column ’id’):
as.numeric(table(df[11:20,2]))
##After running the codes the results are:
[1] 4 3 3
Let me explain a little again: in column ’a’ and regarding only those observations which have number ’2’ in column ’id’) we can say that number '1' occured 4 times, number '2' occured 3 times and number '3' occured 3 times.
So this is what I would like to do. Calculating the occurrences of numbers for each custom-defined subsets (and then collecting these values into a data frame). I know it is not a difficult task but the PROBLEM is that I’m gonna have to change the input ’df’ dataframe on a regular basis and hence both the overall number of rows and columns might change over time…
What I have done so far is that I have separated the ’df’ dataframe by columns, like this:
for (z in (2:ncol(df))) assign(paste("df",z,sep="."),df[,z])
So df.2 will refer to df$a, df.3 will equal df$b, df.4 will equal df$c etc. But I’m really stuck now and I don’t know how to move forward…
Is there a proper, ”automatic” way to solve this problem?
How about -
> library(reshape)
> dftab <- table(melt(df,'id'))
> dftab
, , value = 1
variable
id a b c d e
1 3 8 2 2 4
2 4 6 3 2 4
3 4 2 1 5 1
, , value = 2
variable
id a b c d e
1 0 1 4 3 3
2 3 3 3 6 2
3 1 4 5 3 4
, , value = 3
variable
id a b c d e
1 7 1 4 5 3
2 3 1 4 2 4
3 5 4 4 2 5
So to get the number of '3's in column 'a' and group '1'
you could just do
> dftab[3,'a',1]
[1] 4
A combination of tapply and apply can create the data you want:
tapply(df$id,df$id,function(x) apply(df[id==x,-1],2,table))
However, when a grouping doesn't have all the elements in it, as in 1a, the result will be a list for that id group rather than a nice table (matrix).
$`1`
$`1`$a
1 3
3 7
$`1`$b
1 2 3
8 1 1
$`1`$c
1 2 3
2 4 4
$`1`$d
1 2 3
2 3 5
$`1`$e
1 2 3
4 3 3
$`2`
a b c d e
1 4 6 3 2 4
2 3 3 3 6 2
3 3 1 4 2 4
$`3`
a b c d e
1 4 2 1 5 1
2 1 4 5 3 4
3 5 4 4 2 5
I'm sure someone will have a more elegant solution than this, but you can cobble it together with a simple function and dlply from the plyr package.
ColTables <- function(df) {
counts <- list()
for(a in names(df)[names(df) != "id"]) {
counts[[a]] <- table(df[a])
}
return(counts)
}
results <- dlply(df, "id", ColTables)
This gets you back a list - the first "layer" of the list will be the id variable; the second the table results for each column for that id variable. For example:
> results[['2']]['a']
$a
1 2 3
4 3 3
For id variable = 2, column = a, per your above example.
A way to do it is using the aggregate function, but you have to add a column to your dataframe
> df$freq <- 0
> aggregate(freq~a+id,df,length)
a id freq
1 1 1 3
2 3 1 7
3 1 2 4
4 2 2 3
5 3 2 3
6 1 3 4
7 2 3 1
8 3 3 5
Of course you can write a function to do it, so it's easier to do it frequently, and you don't have to add a column to your actual data frame
> frequency <- function(df,groups) {
+ relevant <- df[,groups]
+ relevant$freq <- 0
+ aggregate(freq~.,relevant,length)
+ }
> frequency(df,c("b","id"))
b id freq
1 1 1 8
2 2 1 1
3 3 1 1
4 1 2 6
5 2 2 3
6 3 2 1
7 1 3 2
8 2 3 4
9 3 3 4
You didn't say how you'd like the data. The by function might give you the output you like.
by(df, df$id, function(x) lapply(x[,-1], table))

Resources