Colocalization in R / Cross-Correlation of 3D matrices - r

I hope this has not been asked before, but I am currently in the process of analyzing some microscopy pictures in R and I am not quite sure how to tackle this.
The situation is as follows:
- I have several pictures of different targets in cells which show spots of signal
- Some pictures show the same cells, but were aquired after others and are therefore a little "off" in x-, y- and z-direction
- Some, but by no means all of the pictures show colocalization = spots from one picture also show up on other pictures
Coming from the spot detection software, I now have data frames for all spots in each picture (one df per picture) with the x-, y- and z-coordinates.
I am now looking for
a) a way to align these matrices of spots from the different colors and thought that cross-correlation of the matrices might be a way to go (however, is there CC in 3D in R?)
b) a way to calculate the colocalization. As these are pictures and intrinsically noisy, even colocalized spots might have a little different coordinates. Is there a function of package in R which merges these data based on a threshold or other parameter of my choice?
Thanks a lot in advance for all your answers!!
Simon

Related

Moving points to a regular grid

I need to evenly distribute clumped 3D data. 2D solutions would be terrific. Up to many millions of data points.
I am looking for the best method to evenly distribute [ie fully populate a correctly sized grid] clumped 3D or 2D data.
Sorting in numerous directions numerous times, with a shake to separate clumps a little now & again, is the method currently used. It is known that it is far from optimum. In general sorting is no good because it spreads/flattens clumps of points across a single surface.
Triangulation would seemingly be best [de-warp back to a regular grid] however I could never get the proper hull and had other problems.
Pressure equalization type methods seem over the top.
Can anybody point me in the direction of information on this?
Thanks for your time.
Currently used [inadequate] code
1 - allocates indexes for sorting in various directions [side to side, then on diagonals],
2 - performs the sorts independently;
3 - allocates 2D locations from the sorts;
4 - averages the locations obtained from the different sorts;
5 - shakes [attempted side to side & up/down movement of whole dataset leaving duplicates static] to declump;
6 - repeat as required up to 11 times.
I presume the "best" result would be the minimum total movement from original locations to final grided locations.

Finding a quantity of anything between two points in space

I'm currently working towards a 3D model of this, but I thought I would start with 2D. Basically, I have a grid of longitude and latitude with NO2 concentrations across it. What I want to produce, at least for now, is a total amount of Nitrogen Dioxide between two points. Like so:
2DGrid
Basically, These two points are at different lats and lons and as I stated I want to find the amount of something between them. The tricky thing to me is that the model data I'm working with is gridded so I need to be able to account for the amount of something along a line at the lat and lons at which that line cuts through said grid.
Another approach, and maybe a better one for my purposes, could be visualized like this:3DGrid
Ultimately, I'd like to be able to create a program (within any language honestly) that could find the amount of "something" between two points in a 3D grid. If you would like specfics, the bottom altitude is the surface, the top grid is the top of the atmosphere. The bottom point is a measurement device looking at the sun during a certain time of day (and therefore having a certain zenith and azimuth angle). I want to find the NO2 between that measurement device and the "top of the atmosphere" which in my grid is just the top altitude level (of which there are 25).
I'm rather new to coding, stack exchange, and even the subject matter I'm working with so the sparse code I've made might end up creating more clutter than purely asking the question and seeing what methods/code you might suggest?
Hopefully my question is beneficial!
Best,
Taylor
To traverse all touched cells, you can use Amanatides-Woo algorithm. It is suitable both for 2D and for 3D case.
Implementation clues
To account for quantity used from every cell, you can apply some model. For example, calculate path length inside cell (as difference of enter and exit coordinates) and divide by normalizing factor to get cell weight (for example, byCellSize*Sqrt(3) for 3D case as diagonal length).

Adding plotstick-like arrows to a scatterplot

This is my first post here, thought i have read a lot of your Q&A these last 6 months. I'm currently working on ADCP (Aquatic Doppler Current Profiler) data, handled by the "oce" package from Dan Kelley (a little bit of advertising for those who want to deal with oceanographic datas in R). I'm not very experienced in R, and i have read the question relative to abline for levelplot functions "How to add lines to a levelplot made using lattice (abline somehow not working)?".
What i currently have is a levelplot representing a time series of echo intensity (from backscattered signal, which is monitored in the same time as current is) data taken in 10m of depth, this 10m depth line is parted into 25 rows, where each measurement is done along the line. (see the code part to obtain an image of what i have)
(unfortunately, my reputation doesn't allow me to post images).
I then proceed to generate an other plot, which represents arrows of the current direction as:
The length of each arrow gives an indication of the current strength
Its orientation is represented (all of this is done by taking the two components of the current intensity (East-West / North-South) and represent the resulting current).
There is an arrow drawn for each tick of time (thus for the 1000 columns of my example data, there are always two components of the current intensity).
Those arrows are drawn at the beginning of each measurement cell, thus at each row of my data, allowing to have a representation of currents for the whole water column.
You can see the code part to have a "as i have" representation of currents
The purpose of this question is to understand how i can superimpose those two representations, drawing my current arrows at each row of the represented data, thus making a representation of both current direction, intensity and echo intensity.
Here i can't find any link to describe what i mean, but this is something i have already seen.
I tried with the panel function which seems to be the best option, but my knowledge of R and the handeling of this kind of work is small, and i hope one of you may have the time and the knowledges to help me to solve this problem way faster than i could.
I am, of course, available to answer any questions or give precisions. I may ask a lot more, after working on a large code for 6 months, my thirst for learning is now large.
Code to represent data :
Here are some data to represent what I have:
U (north/south component of velocity) and V (East/west):
U1= c(0.043,0.042,0.043,0.026,0.066,-0.017,-0.014,-0.019,0.024,-0.007,0.000,-0.048,-0.057,-0.101,-0.063,-0.114,-0.132,-0.103,-0.080,-0.098,-0.123,-0.087,-0.071,-0.050,-0.095,-0.047,-0.031,-0.028,-0.015,0.014,-0.019,0.048,0.026,0.039,0.084,0.036,0.071,0.055,0.019,0.059,0.038,0.040,0.013,0.044,0.078,0.040,0.098,0.015,-0.009,0.013,0.038,0.013,0.039,-0.008,0.024,-0.004,0.046,-0.004,-0.079,-0.032,-0.023,-0.015,-0.001,-0.028,-0.030,-0.054,-0.071,-0.046,-0.029,0.012,0.016,0.049,-0.020,0.012,0.016,-0.021,0.017,0.013,-0.008,0.057,0.028,0.056,0.114,0.073,0.078,0.133,0.056,0.057,0.096,0.061,0.096,0.081,0.100,0.092,0.057,0.028,0.055,0.025,0.082,0.087,0.070,-0.010,0.024,-0.025,0.018,0.016,0.007,0.020,-0.031,-0.045,-0.009,-0.060,-0.074,-0.072,-0.082,-0.100,-0.047,-0.089,-0.074,-0.070,-0.070,-0.070,-0.075,-0.070,-0.055,-0.078,-0.039,-0.050,-0.049,0.024,-0.026,-0.021,0.008,-0.026,-0.018,0.002,-0.009,-0.025,0.029,-0.040,-0.006,0.055,0.018,-0.035,-0.011,-0.026,-0.014,-0.006,-0.021,-0.031,-0.030,-0.056,-0.034,-0.026,-0.041,-0.107,-0.069,-0.082,-0.091,-0.096,-0.043,-0.038,-0.056,-0.068,-0.064,-0.042,-0.064,-0.058,0.016,-0.041,0.018,-0.008,0.058,0.006,0.007,0.060,0.011,0.050,-0.028,0.023,0.015,0.083,0.106,0.057,0.096,0.055,0.119,0.145,0.078,0.090,0.110,0.087,0.098,0.092,0.050,0.068,0.042,0.059,0.030,-0.005,-0.005,-0.013,-0.013,-0.016,0.008,-0.045,-0.021,-0.036,0.020,-0.018,-0.032,-0.038,0.021,-0.077,0.003,-0.010,-0.001,-0.024,-0.020,-0.022,-0.029,-0.053,-0.022,-0.007,-0.073,0.013,0.018,0.002,-0.038,0.024,0.025,0.033,0.008,0.016,-0.018,0.023,-0.001,-0.010,0.006,0.053,0.004,0.001,-0.003,0.009,0.019,0.024,0.031,0.024,0.009,-0.009,-0.035,-0.030,-0.031,-0.094,-0.006,-0.052,-0.061,-0.104,-0.098,-0.054,-0.161,-0.110,-0.078,-0.178,-0.052,-0.073,-0.051,-0.065,-0.029,-0.012,-0.053,-0.070,-0.040,-0.056,-0.004,-0.032,-0.065,-0.005,0.036,0.023,0.043,0.078,0.039,0.019,0.061,0.025,0.036,0.036,0.062,0.048,0.073,0.037,0.025,0.000,-0.007,-0.014,-0.050,-0.014,0.007,-0.035,-0.115,-0.039,-0.113,-0.102,-0.109,-0.158,-0.158,-0.133,-0.110,-0.170,-0.124,-0.115,-0.134,-0.097,-0.106,-0.155,-0.168,-0.038,-0.040,-0.074,-0.011,-0.040,-0.003,-0.019,-0.022,-0.006,-0.049,-0.048,-0.039,-0.011,-0.036,-0.001,-0.018,-0.037,-0.001,0.033,0.061,0.054,0.005,0.040,0.045,0.062,0.016,-0.007,-0.005,0.009,0.044,0.029,-0.016,-0.028,-0.021,-0.036,-0.072,-0.138,-0.060,-0.109,-0.064,-0.142,-0.081,-0.032,-0.077,-0.058,-0.035,-0.039,-0.013,0.007,0.007,-0.052,0.024,0.018,0.067,0.015,-0.002,-0.004,0.038,-0.010,0.056)
V1=c(-0.083,-0.089,-0.042,-0.071,-0.043,-0.026,0.025,0.059,-0.019,0.107,0.049,0.089,0.094,0.090,0.120,0.169,0.173,0.159,0.141,0.157,0.115,0.128,0.154,0.083,0.038,0.081,0.129,0.120,0.112,0.074,0.022,-0.022,-0.028,-0.048,-0.027,-0.056,-0.027,-0.107,-0.020,-0.063,-0.069,-0.019,-0.055,-0.071,-0.027,-0.034,-0.018,-0.089,-0.068,-0.129,-0.034,-0.002,0.011,-0.009,-0.038,-0.013,-0.006,0.027,0.037,0.022,0.087,0.080,0.119,0.085,0.076,0.072,0.029,0.103,0.019,0.020,0.052,0.024,-0.051,-0.024,-0.008,0.011,-0.019,0.023,-0.011,-0.033,-0.101,-0.157,-0.094,-0.099,-0.106,-0.103,-0.139,-0.093,-0.098,-0.083,-0.118,-0.142,-0.155,-0.095,-0.122,-0.072,-0.034,-0.047,-0.036,0.014,0.035,-0.034,-0.012,0.054,0.030,0.060,0.091,0.013,0.049,0.083,0.070,0.127,0.048,0.118,0.123,0.099,0.097,0.074,0.125,0.051,0.107,0.069,0.040,0.102,0.100,0.119,0.087,0.077,0.044,0.091,0.020,0.010,-0.028,0.026,-0.018,-0.020,0.010,0.034,0.005,0.010,0.028,-0.043,0.025,-0.069,-0.003,0.004,-0.001,0.024,0.032,0.076,0.033,0.071,0.000,0.052,0.034,0.058,0.002,0.070,0.025,0.056,0.051,0.080,0.051,0.101,0.009,0.052,0.079,0.035,0.051,0.049,0.064,0.004,0.011,0.005,0.031,-0.021,-0.024,-0.048,-0.011,-0.072,-0.034,-0.020,-0.052,-0.069,-0.088,-0.093,-0.084,-0.143,-0.103,-0.110,-0.124,-0.175,-0.083,-0.117,-0.090,-0.090,-0.040,-0.068,-0.082,-0.082,-0.061,-0.013,-0.029,-0.032,-0.046,-0.031,-0.048,-0.028,-0.034,-0.012,0.006,-0.062,-0.043,0.010,0.036,0.050,0.030,0.084,0.027,0.074,0.082,0.087,0.079,0.031,0.003,0.001,0.038,0.002,-0.038,0.003,0.023,-0.011,0.013,0.003,-0.046,-0.021,-0.050,-0.063,-0.068,-0.085,-0.051,-0.052,-0.065,0.014,-0.016,-0.082,-0.026,-0.032,0.019,-0.026,0.036,-0.005,0.092,0.070,0.045,0.074,0.091,0.122,-0.007,0.094,0.064,0.087,0.063,0.083,0.109,0.062,0.096,0.036,-0.019,0.075,0.052,0.025,0.031,0.078,0.044,-0.018,-0.040,-0.039,-0.140,-0.037,-0.095,-0.056,-0.044,-0.039,-0.086,-0.062,-0.085,-0.023,-0.103,-0.035,-0.067,-0.096,-0.097,-0.060,0.003,-0.051,0.014,-0.002,0.054,0.045,0.073,0.080,0.096,0.104,0.126,0.144,0.136,0.132,0.160,0.155,0.136,0.080,0.144,0.087,0.093,0.103,0.151,0.165,0.146,0.159,0.156,0.002,0.023,-0.019,0.078,0.031,0.038,0.019,0.094,0.018,0.028,0.064,-0.052,-0.034,0.000,-0.074,-0.076,-0.028,-0.048,-0.025,-0.095,-0.098,-0.045,-0.016,-0.030,-0.036,-0.012,0.023,0.038,0.042,0.039,0.073,0.066,0.027,0.016,0.093,0.129,0.138,0.121,0.077,0.046,0.067,0.068,0.023,0.062,0.038,-0.007,0.055,0.006,-0.015,0.008,0.064,0.012,0.004,-0.055,0.018,0.042)
U2=c(0.022,0.005,-0.022,0.025,-0.014,-0.020,-0.001,-0.021,-0.008,-0.006,-0.056,0.050,-0.068,0.018,-0.106,-0.053,-0.084,-0.082,-0.061,-0.041,-0.057,-0.123,-0.060,-0.029,-0.084,-0.004,0.030,-0.021,-0.036,-0.016,0.006,0.088,0.088,0.079,0.063,0.097,0.020,-0.048,0.046,0.057,0.065,0.042,0.022,0.016,0.041,0.109,0.024,-0.010,-0.084,-0.002,0.004,-0.033,-0.025,-0.020,-0.061,-0.060,-0.043,-0.027,-0.054,-0.054,-0.040,-0.077,-0.043,-0.014,0.030,-0.051,0.001,-0.029,0.008,-0.023,0.015,0.002,-0.001,0.029,0.048,0.081,-0.022,0.040,0.018,0.131,0.059,0.055,0.043,0.027,0.091,0.104,0.101,0.084,0.048,0.057,0.044,0.083,0.063,0.083,0.079,0.042,-0.021,0.017,0.005,0.001,-0.033,0.010,-0.028,-0.035,-0.012,-0.034,-0.055,-0.009,0.001,-0.084,-0.047,-0.020,-0.046,-0.042,-0.058,-0.071,0.013,-0.045,-0.070,0.000,-0.067,-0.090,0.012,-0.013,-0.013,-0.009,-0.063,-0.047,-0.030,0.046,0.026,0.019,0.007,-0.056,-0.062,0.009,-0.019,-0.005,0.003,0.022,-0.006,-0.019,0.020,0.025,0.040,-0.032,0.015,0.019,-0.014,-0.031,-0.047,0.010,-0.058,-0.079,-0.052,-0.044,0.012,-0.039,-0.007,-0.068,-0.095,-0.053,-0.066,-0.056,-0.033,-0.006,0.001,0.010,0.004,0.011,0.013,0.029,-0.011,0.007,0.023,0.087,0.054,0.040,0.013,-0.006,0.076,0.086,0.103,0.121,0.070,0.074,0.067,0.045,0.088,0.041,0.075,0.039,0.043,0.016,0.065,0.056,0.047,-0.002,-0.001,-0.009,-0.029,0.018,0.041,0.002,-0.022,0.003,0.008,0.031,0.003,-0.031,-0.015,0.014,-0.057,-0.043,-0.045,-0.067,-0.040,-0.013,-0.111,-0.067,-0.055,-0.004,-0.070,-0.019,0.009,0.009,0.032,-0.021,0.023,0.123,-0.032,0.040,0.012,0.042,0.038,0.037,-0.007,0.003,0.011,0.090,0.039,0.083,0.023,0.056,0.030,0.042,0.030,-0.046,-0.034,-0.021,-0.076,-0.017,-0.071,-0.053,-0.014,-0.060,-0.038,-0.076,-0.011,-0.005,-0.051,-0.043,-0.032,-0.014,-0.038,-0.081,-0.021,-0.035,0.014,-0.001,0.001,0.003,-0.029,-0.031,0.000,0.048,-0.036,0.034,0.054,0.001,0.046,0.006,0.039,0.015,0.012,0.034,0.022,0.015,0.033,0.037,0.012,0.057,0.001,-0.014,0.012,-0.007,-0.022,-0.002,-0.008,0.043,-0.041,-0.057,-0.006,-0.079,-0.070,-0.038,-0.040,-0.073,-0.045,-0.101,-0.092,-0.046,-0.047,-0.023,-0.028,-0.019,-0.086,-0.047,-0.038,-0.068,-0.017,0.037,-0.010,-0.016,0.010,-0.005,-0.031,0.004,-0.034,0.005,0.006,-0.015,0.017,-0.043,-0.007,-0.009,0.013,0.026,-0.036,0.011,0.047,-0.025,-0.023,0.043,-0.020,-0.003,-0.043,0.000,-0.018,-0.075,-0.045,-0.063,-0.043,-0.055,0.007,-0.063,-0.085,-0.031,0.005,-0.067,-0.059,-0.059,-0.029,-0.014,-0.040,-0.072,-0.018,0.039,-0.006,-0.001,-0.015,0.038,0.038,-0.009,0.026,0.017,0.056)
V2=c(-0.014,0.001,0.004,-0.002,0.022,0.019,0.023,-0.023,0.030,-0.085,-0.007,-0.027,0.100,0.058,0.108,0.055,0.132,0.115,0.084,0.046,0.102,0.121,0.036,0.019,0.066,0.049,-0.011,0.020,0.023,0.011,0.041,0.009,-0.009,-0.023,-0.036,0.031,0.012,0.026,-0.011,0.009,-0.027,-0.033,-0.054,-0.004,-0.040,-0.048,-0.009,0.023,-0.028,0.022,0.090,0.060,0.040,0.003,-0.011,0.030,0.107,0.025,0.084,0.036,0.074,0.065,0.078,0.011,0.058,0.092,0.083,0.080,0.039,0.000,-0.027,0.035,0.011,0.004,0.023,-0.033,-0.060,-0.049,-0.101,-0.033,-0.105,-0.042,-0.088,-0.086,-0.093,-0.085,-0.028,-0.046,-0.045,-0.052,-0.009,-0.066,-0.073,-0.067,0.011,-0.057,-0.087,-0.066,-0.103,-0.075,0.003,-0.021,0.010,-0.013,0.021,0.020,0.084,0.028,0.127,0.050,0.104,0.097,0.075,0.021,0.057,0.095,0.080,0.077,0.086,0.110,0.054,0.016,0.105,0.065,0.046,0.047,0.072,0.058,0.092,0.063,0.033,0.087,0.036,0.049,0.093,0.008,0.064,0.068,0.040,0.049,0.035,0.042,0.045,0.021,0.056,0.007,0.026,0.067,0.046,0.088,0.084,0.070,0.037,0.079,0.065,0.074,0.077,0.023,0.094,0.061,0.096,0.068,0.067,0.091,0.061,0.069,0.090,0.046,0.057,0.011,-0.018,0.005,0.001,-0.023,-0.087,0.010,0.023,-0.025,-0.040,-0.059,-0.063,-0.075,-0.136,-0.078,-0.102,-0.128,-0.116,-0.091,-0.136,-0.083,-0.115,-0.063,-0.055,-0.080,-0.093,-0.099,-0.053,-0.042,-0.011,-0.034,-0.027,-0.042,-0.022,-0.008,-0.033,-0.039,-0.036,0.019,0.036,-0.002,0.000,-0.021,0.060,0.030,0.073,0.080,0.061,0.046,0.062,0.010,0.034,0.103,0.107,0.016,0.080,0.067,0.007,0.060,0.021,-0.026,0.008,0.051,0.030,0.001,-0.036,-0.047,0.000,0.006,0.006,0.013,0.009,0.019,0.009,-0.086,-0.020,0.018,0.039,0.014,0.011,0.052,0.031,0.095,0.047,0.065,0.114,0.086,0.102,0.037,0.039,0.060,0.024,0.091,0.058,0.065,0.060,0.045,0.031,0.062,0.047,0.043,0.057,0.032,0.057,0.051,0.019,0.056,0.024,-0.003,0.023,-0.013,-0.032,-0.022,-0.064,-0.021,-0.050,-0.063,-0.090,-0.082,-0.076,-0.077,-0.042,-0.060,-0.010,-0.060,-0.069,-0.028,-0.071,-0.046,-0.020,-0.074,0.080,0.071,0.065,0.079,0.065,0.039,0.061,0.154,0.072,0.067,0.133,0.106,0.080,0.047,0.053,0.110,0.080,0.122,0.075,0.052,0.034,0.081,0.118,0.079,0.101,0.053,0.082,0.036,0.033,0.026,0.002,-0.002,0.020,0.087,0.021,0.034,0.003,-0.021,0.016,-0.009,-0.045,-0.043,-0.020,0.027,0.008,-0.006,0.043,0.045,0.014,0.053,0.083,0.113,0.091,0.028,0.060,0.040,0.019,0.114,0.126,0.090,0.046,0.089,0.029,0.030,0.010,0.045,0.040,0.072,-0.033,-0.008,0.014,-0.018,-0.004,-0.037,0.015,-0.021,-0.015)
bindistances=c(1.37,1.62,1.87,2.12,2.37,2.62,2.87,3.12,3.37,3.62,3.87,4.12,4.37,4.62,4.87,5.12,5.37,5.62,5.87,6.12,6.37,6.62,6.87,7.12,7.37,7.62,7.87,8.12)
Then, as a representation of currents:
AA=14
x11()
par(mfrow=c(4,1))
plotSticks(x=seq(from=(1),
to=(377),
by=(1)),
u=U1,
v=V1,
yscale=ysc,xlab='',ylab='',xaxt='n',yaxt='n',col=(rep('black',384)))
axis(side=1)
plotSticks(x=seq(from=(1),
to=(377),
by=(1)),
u=U2,
v=V2,
yscale=ysc,xlab='',ylab='',xaxt='n',yaxt='n',col=(rep('black',384)))
plotSticks(x=seq(from=(1),
to=(377),
by=(1)),
u=U2,
v=V2,
yscale=ysc,xlab='',ylab='',xaxt='n',yaxt='n',col=(rep('black',384)))
plotSticks(x=seq(from=(1),
to=(377),
by=(1)),
u=U2,
v=V2,
yscale=ysc,xlab='',ylab='',xaxt='n',yaxt='n',col=(rep('black',384)))
In order to simplify the representation, the three last plots are based on the same data.

Problem with Principal Component Analysis

I'm not sure this is the right place but here I go:
I have a database of 300 picture in high-resolution. I want to compute the PCA on this database and so far here is what I do: - reshape every image as a single column vector - create a matrix of all my data (500x300) - compute the average column and substract it to my matrix, this gives me X - compute the correlation C = X'X (300x300) - find the eigenvectors V and Eigen Values D of C. - the PCA matrix is given by XV*D^-1/2, where each column is a Principal Component
This is great and gives me correct component.
Now what I'm doing is doing the same PCA on the same database, except that the images have a lower resolution.
Here are my results, low-res on the left and high-res on the right. Has you can see most of them are similar but SOME images are not the same (the ones I circled)
Is there any way to explain this? I need for my algorithm to have the same images, but one set in high-res and the other one in low-res, how can I make this happen?
thanks
It is very possible that the filter you used could have done a thing or two to some of the components. After all, lower resolution images don't contain higher frequencies that, too, contribute to which components you're going to get. If component weights (lambdas) at those images are small, there's also a good possibility of errors.
I'm guessing your component images are sorted by weight. If they are, I would try to use a different pre-downsampling filter and see if it gives different results (essentially obtain lower resolution images by different means). It is possible that the components that come out differently have lots of frequency content in the transition band of that filter. It looks like images circled with red are nearly perfect inversions of each other. Filters can cause such things.
If your images are not sorted by weight, I wouldn't be surprised if the ones you circled have very little weight and that could simply be a computational precision error or something of that sort. In any case, we would probably need a little more information about how you downsample, how you sort the images before displaying them. Also, I wouldn't expect all images to be extremely similar because you're essentially getting rid of quite a few frequency components. I'm pretty sure it wouldn't have anything to do with the fact that you're stretching out images into vectors to compute PCA, but try to stretch them out in a different direction (take columns instead of rows or vice versa) and try that. If it changes the result, then perhaps you might want to try to perform PCA somewhat differently, not sure how.

Volume of a 3D closed mesh car object

I have a 3D closed mesh car object having a surface made up
triangles. I want to calculate its volume, center of volume and inertia tensor.
Could you help me
Regards.
George
For volume...
For each triangular facet, lookup its corner points. Call 'em P,Q,R.
Compute this quantity (I call it "partial volume")
pv = PxQyRz + PyQzRx + PzQxRy - PxQzRy - PyQxRz - PzQyRx
Add these together for all facets and divide by 6.
Important! The P,Q,R for each facet must be arranged clockwise as seen from outside. (Or all counter-clockwise, as long as it's consistent for all facets.)
If the mesh has any quadrilaterals, just temporarily hallucinate a diagonal joining one pair of opposite corners. That makes it into two triangles.
Practical computationial improvement: Before doing math with P,Q and R, subtract the coordinates of some "center" point C. This can be the center of mass, a midpoint between the min/max x, y and z, or any convenient point inside or near the mesh. This helps minimize truncation errors for more accurate volumes.
From numerical point of view, what you are trying to achieve is quite simple and can be reduced to calculating few quadratures. Wikipedia will provide needed information about maths behind it.
If you are looking for out-of-the-box volume calculation, take a look at this entry.
As of inertia -- shape is not enough, as you also need distribution of mass.
Well, there isn't much information on the car being provided here - you should be able to break down the car into simpler shapes - the higher degree of approximation your require - the more simpler shapes you can break it into. (This could be difficult if the car is somehow dynamically generated and completely different every time ... but I don't see that situation making any sense).
This should help with finding the Inertial Tensor of various simpler shapes: http://www.gamedev.net/community/forums/topic.asp?topic_id=57001 , finding the volumes and the likes of things like spheres and cubes is pretty common knowledge so I won't bother linking that.
I think it was Archimedes who discovered that if you submerge the car in a volume of liquid, the displaced liquid will have the same volume as the car.
I'm not sure what this would help you in this case though. Having a liquid simulation running in the background and submerging the mesh into it sounds a bit over the top. Although, I think it does work, and therefore qualifies as a (bit useless nonetheless) answer. ;^)

Resources