add line to nls fit and plot - r

I am having problems adding a line to one scatter plot. My data is fit to an exponential model. I used nls to get coefficients:
fit <- nls(volumen ~ bo+ exp(b1*dap), data= df, start = list(bo=0, b1=55))
Later I used plot and lines commands to visualize the fit to my data:
plot(dap,volumen)
lines(dap,predict(fit,data.frame(x=dap)))
My Big problem is that I visualize a linear line that does not fit with my exponential points.
Could my model statement have errors?
Please, any comments I would appreciate.

Related

R: Fit curve to points: what linear/non-linear model to use?

I have a data which should follow the power law distribution.
x = distance
y = %
I want to create a model and to add the fitted line to my plot.
My aim to recreate something like this:
As author uses R-square; I assume they applied linear models, as R^2 is not suitable for non-linear models. http://blog.minitab.com/blog/adventures-in-statistics-2/why-is-there-no-r-squared-for-nonlinear-regression
However, I can't find out how to "curve" my line to the points; how to add the formula y ~ a*x^(-b) to my model.
Instead of curly line I got back the line as from the simple linear regression.
My questions are:
Do I correctly assume the model y ~ a*x^(-b) used by author is linear?
what type of model to use to recreate my example: lm, glm, nls, etc. ?
I generated the dummy data, including the applied power law formula from the plot above:
set.seed(42)
scatt<-runif(10)
x<-seq(1, 1000, 100)
b = 1.8411
a = 133093
y = a*x^(-b) + scatt # add some variability in my dependent variable
plot(y ~ x)
and tried to create a glm model.
# formula for non-linear model
m<-m.glm<-glm(y ~ x^2, data = dat) #
# add predicted line to plot
lines(x,predict(m),col="red",lty=2,lwd=3)
This is my first time to model, so I am really confused and I don't know where to start... thank you for any suggestion or directions, I really appreciate it...
I personally think this question a dupe of this: `nls` fails to estimate parameters of my model but I would be cold-blooded if I close it (as OP put a bounty). Anyway, bounty question can not be closed.
So the best I could think of, is to post a community wiki answer (I don't want to get this bounty).
As you want to fit a model of this form y ~ a*x^(-b), it often benefit from taking log transform on both sides and fit a linear model log(y) ~ log(x).
fit <- lm(log(y) ~ log(x))
As you have already known how to use curve to plot regression curve and are happy with it, I will now show how to make plot.
Some people call this log-log regression. Here are some other links I have for such kind of regression:
How to predict a new value using simple linear regression log(y)=b0+b1*log(x)
How to plot confidence bands for my weighted log-log linear regression?
m <- lm(log(y) ~ log(x), data=dat)
a <- exp(intercept)
b <- -exp(slope)
plot(y ~ x, type="p", lty=3)
lines(x, exp(predict(m)), col="blue", lty=2, lwd=3)

Plot Non-linear Mixed Model Over Original Fitted Data

I'm trying to plot the resultant curve from fitting a non-linear mixed model. It should be something like a curve of a normal distribution but skewed to the right. I followed previous links here and here, but when I use my data I can not make it happen for different difficulties (see below).
Here is the dataset
and code
s=read.csv("GRVMAX tadpoles.csv")
t=s[s$SPP== levels(s$SPP)[1],]
head(t)
vmax=t[t$PERFOR=="VMAX",]
colnames(vmax)[6]="vmax"
vmax$TEM=as.numeric(as.character(vmax$TEM));
require(lme4)
start =c(TEM=25)
is.numeric(start)
nm1 <- nlmer ( vmax ~ deriv(TEM)~TEM|INDIVIDUO,nlpars=start, nAGQ =0,data= vmax)# this gives an error suggesting nlpars is not numeric, despite start is numeric...:~/
After that, I want to plot the curve over the original data
with(vmax,plot(vmax ~ (TEM)))
x=vmax$TEM
lines(x, predict(nm1, newdata = data.frame(TEM = x, INDIVIDUO = "ACI5")))
Any hint?
Thanks in advance

plot nonlinear regression conf intervals in R

Please help.
I have managed to fit a fairly decent nonlinear regression curve to my data using:
model2 <- nls(urine~a*(1-exp(-c*water)), data = eagle, start = list(a=550, c=0.00385))
and then I generate my plot using:
av <- seq(0,1200, 0.5)
bv <- predict (model2, data=eagle, list(water=av))
plot (urine~water, data = eagle)
lines (av,bv)
I want to draw on some dotted lines for upper and lower 95% confidence intervals. I have managed to write code for my linear regression analyses but I am struggling with the current nonlinear regression. The following code:
a <- predict (model2, newdata=data.frame(water=av), interval="confidence")
for linear regressions this gives me a dataframe with three columns for fit, lwr and upr. With my nonlinear regression it just gives me a list of numbers which I cant do anything with. Any suggestions? Is there a simple way to get upper and confidence lines for a nonlinear regression?
se.fit isnt operating apparently. Found lots of forums discussing the difficulties of fitting confidence intervals to non linear regressions in R. After a whole day of searching and banging my head against the internet I finally found a very helpful formula. Im not 100% sure how it works but it works so here it is for anyone else who needs to do this...
http://www.r-bloggers.com/predictnls-part-1-monte-carlo-simulation-confidence-intervals-for-nls-models/
Once you have produced your table of statistics for your predicted values based on a sequence of x values, you can access the lwr and upr CI value data in columns 6 and 7 of the output and plot that way.

plot multiple ROC curves for logistic regression model in R

I have a logistic regression model (using R) as
fit6 <- glm(formula = survived ~ ascore + gini + failed, data=records, family = binomial)
summary(fit6)
I'm using pROC package to draw ROC curves and figure out AUC for 6 models fit1 through fit6.
I have approached this way to plots one ROC.
prob6=predict(fit6,type=c("response"))
records$prob6 = prob6
g6 <- roc(survived~prob6, data=records)
plot(g6)
But is there a way I can combine the ROCs for all 6 curves in one plot and display the AUCs for all of them, and if possible the Confidence Intervals too.
You can use the add = TRUE argument the plot function to plot multiple ROC curves.
Make up some fake data
library(pROC)
a=rbinom(100, 1, 0.25)
b=runif(100)
c=rnorm(100)
Get model fits
fit1=glm(a~b+c, family='binomial')
fit2=glm(a~c, family='binomial')
Predict on the same data you trained the model with (or hold some out to test on if you want)
preds=predict(fit1)
roc1=roc(a ~ preds)
preds2=predict(fit2)
roc2=roc(a ~ preds2)
Plot it up.
plot(roc1)
plot(roc2, add=TRUE, col='red')
This produces the different fits on the same plot. You can get the AUC of the ROC curve by roc1$auc, and can add it either using the text() function in base R plotting, or perhaps just toss it in the legend.
I don't know how to quantify confidence intervals...or if that is even a thing you can do with ROC curves. Someone else will have to fill in the details on that one. Sorry. Hopefully the rest helped though.

add a logarithmic regression line to a scatterplot (comparison with Excel)

In Excel, it's pretty easy to fit a logarithmic trend line of a given set of trend line. Just click add trend line and then select "Logarithmic." Switching to R for more power, I am a bit lost as to which function should one use to generate this.
To generate the graph, I used ggplot2 with the following code.
ggplot(data, aes(horizon, success)) + geom_line() + geom_area(alpha=0.3)+
stat_smooth(method='loess')
But the code does local polynomial regression fitting which is based on averaging out numerous small linear regressions. My question is whether there is a log trend line in R similar to the one used in Excel.
An alternative I am looking for is to get an log equation in form y = (c*ln(x))+b; is there a coef() function to get 'c' and 'b'?
Let my data be:
c(0.599885189,0.588404133,0.577784156,0.567164179,0.556257176,
0.545350172,0.535112897,0.52449292,0.51540375,0.507271336,0.499904325,
0.498851894,0.498851894,0.497321087,0.4964600,0.495885955,0.494068121,
0.492154612,0.490145427,0.486892461,0.482395714,0.477229238,0.471010333)
The above data are y-points while the x-points are simply integers from 1:length(y) in increment of 1. In Excel: I can simply plot this and add a logarithmic trend line and the result would look:
With black being the log. In R, how would one do this with the above dataset?
I prefer to use base graphics instead of ggplot2:
#some data with a linear model
x <- 1:20
set.seed(1)
y <- 3*log(x)+5+rnorm(20)
#plot data
plot(y~x)
#fit log model
fit <- lm(y~log(x))
#look at result and statistics
summary(fit)
#extract coefficients only
coef(fit)
#plot fit with confidence band
matlines(x=seq(from=1,to=20,length.out=1000),
y=predict(fit,newdata=list(x=seq(from=1,to=20,length.out=1000)),
interval="confidence"))
#some data with a non-linear model
set.seed(1)
y <- log(0.1*x)+rnorm(20,sd=0.1)
#plot data
plot(y~x)
#fit log model
fit <- nls(y~log(a*x),start=list(a=0.2))
#look at result and statistics
summary(fit)
#plot fit
lines(seq(from=1,to=20,length.out=1000),
predict(fit,newdata=list(x=seq(from=1,to=20,length.out=1000))))
You can easily specify alternative smoothing methods (such as lm(), linear least-squares fitting) and an alternative formula
library(ggplot2)
g0 <- ggplot(dat, aes(horizon, success)) + geom_line() + geom_area(alpha=0.3)
g0 + stat_smooth(method="lm",formula=y~log(x),fill="red")
The confidence bands are automatically included: I changed the color to make them visible since they're very narrow. You can use se=FALSE in stat_smooth to turn them off.
The other answer shows you how to get the coefficients:
coef(lm(success~log(horizon),data=dat))
I can imagine you might next want to add the equation to the graph: see Adding Regression Line Equation and R2 on graph
I'm pretty sure a simple +scale_y_log10() would get you what you wanted. GGPlot stats are calculated after transformations, so the loess() would then be calculated on the log transformed data.
I've just written a blog post here that describes how to match Excel's logarithmic curve fitting exactly. The nub of the approach centers around the lm() function:
# Set x and data.to.fit to the independent and dependent variables
data.to.fit <- c(0.5998,0.5884,0.5777,0.5671,0.5562,0.5453,0.5351,0.524,0.515,0.5072,0.4999,0.4988,0.4988,0.4973,0.49,0.4958,0.4940,0.4921,0.4901,0.4868,0.4823,0.4772,0.4710)
x <- c(seq(1, length(data.to.fit)))
data.set <- data.frame(x, data.to.fit)
# Perform a logarithmic fit to the data set
log.fit <- lm(data.to.fit~log(x), data=data.set)
# Print out the intercept, log(x) parameters, R-squared values, etc.
summary(log.fit)
# Plot the original data set
plot(data.set)
# Add the log.fit line with confidence intervals
matlines(predict(log.fit, data.frame(x=x), interval="confidence"))
Hope that helps.

Resources