Extend the vector of results during loop - r

I would like to create a vector containing my results from a loop. The results are vectors themselves, and they do not have the same length.
Right now I have the code
totalres <- NULL
loop begins
totalres <- c(totalres,loopres)
loop ends
but I've been told this is a very slow code. As I have many iterations and a big data.table I would like to know, whether there is a faster way of doing it?

Three possibilities with loops:
If you have a for loop, you know how big your result will be. Allocate a vector of the needed length, e.g., totalres <- numeric(n), and fill it. (Or use a function from the apply family. These do this for you.)
If you don't know how big the result will be, but know an upper size limit, overallocate to this maximum size and reduce the length after the loop.
If you can't estimate such an upper limit, allocate to a reasonable size and check inside the loop if the size is still sufficient. If the vector is full, grow, but not only by one element but by a bunch of elements.
Of course, it would be better to avoid loops at the R level and use a vectorized solution.

Related

For memory, what should be done when you need to constantly grow a vector to an unknown upper limit?

Suppose that you are dealing with a potentially infinite amount of data. Suppose further that you do not have this data stored in memory, but can generate individual terms at will. Finally, suppose that you want to do some experiment on this data that will involve checking a large but unknown amount of terms in a way that necessitates keeping a great many of them in memory. Toy problems with Recamán's sequence, like "find the minimum number terms needed in that sequence for the first 25 even numbers to have appeared", are what I have in mind as typical examples.
The obvious solution to this sort of problem would be to write some code like:
list<-c(first term)
while([not found enough terms yet])
{
nextTerm<-Whatever
if(this term worked){list<-c(list,nextTerm)}
}
However, building a big vector like this by adding one new term at a time is your memory's worst nightmare. The alternative that I often see suggested is to pre-allocate a big vector in memory by making the first line of your code something like list<-numeric(10^6), but those solutions suppose that we have some rough idea of how many terms we need to check, which isn't always the case. So what can we do when we are dealing with an ever-growing list of unknown required length?
This is very popular subject in R check this answer: https://stackoverflow.com/a/45195098/5442527
Summing up:
Do not use c() to bind as providing value by index [ is much faster. I know that it might seem surprising that you could grow pre-allocated vector. Make an iter variable before while loop and increase the index inside the if statement.
Normally like in Python you do not have to care about it when using append. Even starting with empty list is not an problem as the list (reserved memory) grows expotentialy (x2x2x1.5x1.2...) when you pass some perimeter number of elements. Link Over-allocating

Memory & Computation Efficient Creation of Array with Repeated Elements

I am trying to find an efficient way to create a new array by repeating each element of an old array a different, specified number of times. I have come up with something that works, using array comprehensions, but it is not very efficient, either in memory or in computation:
LENGTH = 1e6
A = collect(1:LENGTH) ## arbitrary values that will be repeated specified numbers of times
NumRepeats = [rand(20:100) for idx = 1:LENGTH] ## arbitrary numbers of times to repeat each value in A
B = vcat([ [A[idx] for n = 1:NumRepeats[idx]] for idx = 1:length(A) ]...)
Ideally, what I would like would be a structure akin to the sparse matrix apparatus that Julia has but that would instead store data efficiently based on the indices where repeated values occur. Barring that, I would at least like an efficient way to create a vector such as B in the example above. I looked into the repeat() function, but as far as I can tell from the documentation and my experimentation with the function, it is just for repeating slices of an array the same number of times for each slice. What is the best way to approach this?
Sounds like you're looking for run-length encoding. There's an RLEVectors.jl package here: https://github.com/phaverty/RLEVectors.jl. Not sure how usable it is. You could also make your own data type fairly easily.
Thanks for trying RLEVectors.jl. Some features and optimizations had been languishing on master without a version bump. It can definitely be mixed with other vectors for element-wise arithmetic. I'll put the linear algebra operations on the feature request list. Any additional feature suggestions would be most welcome.
RLEVectors.jl has a rep function that works like R's and RLEVectors.inverse_ree is like StatsBase.inverse_rle, but it works on run ends rather than lengths.

R language: how to work with dynamically sized vector?

I'm learning R programming, and trying to understand the best approach to work with a vector when you don't know the final size it will end up being. For example, in my case I need to build the vector inside a for loop, but only for some iterations, which aren't know beforehand.
METHOD 1
I could run through the loop a first time to determine the final vector length, initialize the vector to the correct length, then run through the loop a second time to populate the vector. This would be ideal from a memory usage standpoint, since the vector memory would occupy the required amount of memory.
METHOD 2
Or, I could use one for loop, and simply append to the vector as needed, but this would be inefficient from a memory allocation standpoint since a new block may need to be assigned each time a new element is appended to the vector. If you're working with big data, this could be a problem.
METHOD 3
In C or Matlab, I usually initialize the vector length to the largest possible length that I know the final vector could occupy, then populate a subset of elements in the for loop. When the loop completes, I'll re-size the vector length appropriately.
Since R is used a lot in data science, I thought this would be a topic others would have encountered and there may be a best practice that was recommended. Any thoughts?
Canonical R code would use lapply or similar to run the function on each element, then combine the results in some way. This avoids the need to grow a vector or know the size ahead of time. This is the functional programming approach to things. For example,
set.seed(5)
x <- runif(10)
some_fun <- function(x) {
if (x > 0.5) {
return(x)
} else {
return(NULL)
}
}
unlist(lapply(x, some_fun))
The size of the result vector is not specified, but is determined automatically by combining results.
Keep in mind that this is a trivial example for illustration. This particular operation could be vectorized.
I think Method1 is the best approach if you have a very large amount of data. But in general you might want to read this chapter before you make a final decision:
http://adv-r.had.co.nz/memory.html

Yet another apply Questions

I am totally convinced that an efficient R programm should avoid using loops whenever possible and instead should use the big family of the apply functions.
But this cannot happen without pain.
For example I face with a problem whose solution involves a sum in the applied function, as a result the list of results is reduced to a single value, which is not what I want.
To be concrete I will try to simplify my problem
assume N =100
sapply(list(1:N), function(n) (
choose(n,(floor(n/2)+1):n) *
eps^((floor(n/2)+1):n) *
(1- eps)^(n-((floor(n/2)+1):n))))
As you can see the function inside cause length of the built vector to explode
whereas using the sum inside would collapse everything to single value
sapply(list(1:N), function(n) (
choose(n,(floor(n/2)+1):n) *
eps^((floor(n/2)+1):n) *
(1- eps)^(n-((floor(n/2)+1):n))))
What I would like to have is a the list of degree of N.
so what do you think? how can I repair it?
Your question doesn't contain reproducible code (what's "eps"?), but on the general point about for loops and optimising code:
For loops are not incredibly slow. For loops are incredibly slow when used improperly because of how memory is assigned to objects. For primitive objects (like vectors), modifying a value in a field has a tiny cost - but expanding the /length/ of the vector is fairly costly because what you're actually doing is creating an entirely new object, finding space for that object, copying the name over, removing the old object, etc. For non-primitive objects (say, data frames), it's even more costly because every modification, even if it doesn't alter the length of the data.frame, triggers this process.
But: there are ways to optimise a for loop and make them run quickly. The easiest guidelines are:
Do not run a for loop that writes to a data.frame. Use plyr or dplyr, or data.table, depending on your preference.
If you are using a vector and can know the length of the output in advance, it will work a lot faster. Specify the size of the output object before writing to it.
Do not twist yourself into knots avoiding for loops.
So in this case - if you're only producing a single value for each thing in N, you could make that work perfectly nicely with a vector:
#Create output object. We're specifying the length in advance so that writing to
#it is cheap
output <- numeric(length = length(N))
#Start the for loop
for(i in seq_along(output)){
output[i] <- your_computations_go_here(N[i])
}
This isn't actually particularly slow - because you're writing to a vector and you've specified the length in advance. And since data.frames are actually lists of equally-sized vectors, you can even work around some issues with running for loops over data.frames using this; if you're only writing to a single column in the data.frame, just create it as a vector and then write it to the data.frame via df$new_col <- output. You'll get the same output as if you had looped through the data.frame, but it'll work faster because you'll only have had to modify it once.

Dimension Does Not Match When Populating Matrix

I am currently working in R and I am trying to populate a matrix with
a some for loops. However, I keep getting the "number of items to replace is not a multiple of replacement length" error. The way I set my matrix() is that I specified nrow
(because I am sure of the size) and I leave the ncol blank.
How can I create a matrix that dynamically allocate the dimensions?
Any recommendations?
Thank you.
A couple of options spring to mind:
Make an informed guess as to the size of the matrix and allocate accordingly. Then have your code check to see if you would exceed the limits chosen and expand the object. If you expand by a reasonable chunk size (i.e. don't add just 1 column, add 10 or 20 or n depending on the size of your problem, whatever is reasonable) then you won't incur the copy/expand overhead that often, which is what bogs loops down if written badly.
Store the data/result in a list, each component of which would be one row of your matrix. That way you fill in the object as you go along, and then can either process the resulting list into a matrix with padding, or just work directly with the list. If each row can be of a different length (number of columns) then it doesn't make sense to store as a matrix in the first place and the list is the better option.

Resources