With reference to this question:
Transforming a time-series into a data frame and back
I have a list of monthly averages that start in May 2012 and go through May 2015. It looks like this initially:
head (AVG_LOSCAT2)
month AVG_LOSCAT YEAR MONTH
1 2012-05 5.342066 2012 05
2 2012-06 6.544096 2012 06
3 2012-07 6.448767 2012 07
4 2012-08 7.897919 2012 08
5 2012-09 8.908504 2012 09
6 2012-10 8.088083 2012 10
I do this to get it to convert into a ts object:
AVG_LOSCATSET<- AVG_LOSCAT2[, c(2)]
AVG_LOSCATSET<-round(AVG_LOSCATSET,digits= 1)
Now it looks like this:
AVG_LOS_CATSET
[1] 5.3 6.5 6.4 7.9 8.9 8.1 10.1 12.0 14.7 10.6 8.4 6.3 6.7
[14] 7.4 9.8 9.3 15.1 11.7 11.9 20.7 19.0 9.2 18.1 6.4 8.2 7.9
[27] 11.7 11.8 9.8 10.4 9.8 21.3 12.9 14.0 8.2 4.8 19.7 NA
I convert to a time series to get this lovely output:
AVG_LOSCATSET2<-ts(AVG_LOSCATSET,frequency = 12, start=c(2012,5))
AVG_LOSCATSET2
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2012 5.3 6.5 6.4 7.9 8.9 8.1 10.1 12.0
2013 14.7 10.6 8.4 6.3 6.7 7.4 9.8 9.3 15.1 11.7 11.9 20.7
2014 19.0 9.2 18.1 6.4 8.2 7.9 11.7 11.8 9.8 10.4 9.8 21.3
2015 12.9 14.0 8.2 4.8 19.7 NA
At this point doing anything with this is incredibly difficult. I cannot drop it into a report using the ReporteRs package because it is a ts object.
This converts it to a list (I think?):
tapply(AVG_LOSCATSET2, list(year = floor(time(AVG_LOSCATSET2)), month = month.abb[cycle(AVG_LOSCATSET2)]), c)
The months are now in alphabetical order and there is a wonky output for Jan 2013, Jan 2014 appears to have the original value of Jan 2015, and Jan 2015 is strangely NULL.
month
year Apr Aug Dec Feb Jan Jul Jun Mar May Nov Oct Sep
2012 NULL 7.9 12 NULL NULL 6.4 6.5 NULL 5.3 10.1 8.1 8.9
2013 6.3 9.3 20.7 10.6 Numeric,2 9.8 7.4 8.4 6.7 11.9 11.7 15.1
2014 6.4 11.8 21.3 9.2 12.9 11.7 7.9 18.1 8.2 9.8 10.4 9.8
2015 4.8 NULL NULL 14 NULL NULL NA 8.2 19.7 NULL NULL NULL
If I use numbers in stead of abbreviations for the month, I still have the same problems.
tapply(AVG_LOSCATSET2, list(year = floor(time(AVG_LOSCATSET2)), month = cycle(AVG_LOSCATSET2)), c)
month
year 1 2 3 4 5 6 7 8 9 10 11 12
2012 NULL NULL NULL NULL 5.3 6.5 6.4 7.9 8.9 8.1 10.1 12
2013 Numeric,2 10.6 8.4 6.3 6.7 7.4 9.8 9.3 15.1 11.7 11.9 20.7
2014 12.9 9.2 18.1 6.4 8.2 7.9 11.7 11.8 9.8 10.4 9.8 21.3
2015 NULL 14 8.2 4.8 19.7 NA NULL NULL NULL NULL NULL NULL
Any thoughts on how I can fix these glitches affecting my Jan values and/or smoothly convert my ts object into a data frame, matrix, or table?
Thank you.
You do not need time series, just tapply:
res=tapply(AVG_LOSCAT2$AVG_LOSCAT, list(year = AVG_LOSCAT2$YEAR, month = AVG_LOSCAT2$MONTH), round,2)
res
month
year 1 2 3 4 5 6 7 8 9 10 11 12
2012 NA NA NA NA NA 7.51 7.31 8.33 7.66 5.36 6.46 8.30
2013 5.74 7.89 6.49 7.09 5.91 6.31 8.24 6.73 8.56 8.19 6.54 6.49
2014 8.03 6.80 6.25 7.10 5.38 6.21 7.78 8.87 6.62 6.09 8.40 8.37
2015 8.00 5.73 6.32 6.71 6.32 6.75 NA NA NA NA NA NA
Related
I am trying to work with this a data that has information about price electricity. The price is registered each 5 minutes. My objective is replace the negative values with the mean of the day.
year month day fivemin rrp_nsw rrp_qld rrp_sa rrp_tas rrp_vic
2009 7 1 1 16.9 17.6 16.7 15.7 15.5
2009 7 1 2 17.7 18.8 17.8 -16.1 15.5
2009 7 1 3 -17.7 18.6 18.1 15.9 15.4
2009 7 1 4 16.7 18.6 -17.6 14.3 12.8
2009 7 2 1 -15.6 17.6 16.3 13.2 11.8
2009 7 2 2 13.7 15.7 12.0 -11.1 -12.9
2009 7 2 3 13.7 15.8 11.9 11.1 12.9
2009 7 2 4 -13.9 16.1 -12.1 11.2 12.9
2009 8 1 1 13.8 16.0 12.2 11.2 12.8
2009 8 1 2 -13.7 16.3 11.6 10.6 12.6
2009 8 1 3 13.7 -15.8 11.9 11.0 12.7
2009 8 1 4 13.8 16.0 12.1 11.2 12.9
2009 8 2 1 17.6 -17.6 17.3 16.5 17.1
2009 8 2 2 17.7 17.6 17.3 16.8 17.4
2009 8 2 3 15.8 16.0 15.1 15.0 15.5
2009 8 2 4 -15.4 15.6 14.5 14.6 15.1
2009 9 1 1 14.7 15.0 13.8 14.0 14.5
2009 9 1 2 15.3 15.4 14.3 14.6 15.0
2009 9 1 3 15.3 15.6 14.4 14.5 15.0
2009 9 1 4 14.9 15.7 13.7 13.8 14.5
In order to obtain the mean of each day I use the following code
Daily_mean<-Base %>%
arrange(year, month, day, fivemin) %>% #we are ordering the data
group_by(year, month, day)%>%
summarise_at(
vars(c(rrp_nsw, rrp_qld, rrp_sa, rrp_tas, rrp_vic)),
.funs = funs(mean(.)))
When I get the daily mean I want to replace each negative value with the mean of the day. For example using the 16th observation
2009 8 2 4 "8.925" 15.6 14.5 14.6 15.1
If someone can help me i would be grateful
We can use a replace in mutate_at to change the negative values to mean of that column after grouping by the relevant columns
library(dplyr)
Base %>%
arrange(year, month, day, fivemin) %>%
group_by(year, month, day) %>%
mutate_at(vars(rrp_nsw, rrp_qld, rrp_sa, rrp_tas, rrp_vic),
~ replace(., . < 0, mean(.)))
I have the following data:
CET <- url("http://www.metoffice.gov.uk/hadobs/hadcet/cetml1659on.dat")
cet <- read.table(CET, sep = "", skip = 6, header = TRUE,
fill = TRUE, na.string = c(-99.99, -99.9))
names(cet) <- c(month.abb, "Annual")
cet <- cet[-nrow(cet), ]
rn <- as.numeric(rownames(cet))
Years <- rn[1]:rn[length(rn)]
annCET <- data.frame(Temperature = cet[, ncol(cet)],Year = Years)
cet <- cet[, -ncol(cet)]
cet <- stack(cet)[,2:1]
names(cet) <- c("Month","Temperature")
cet <- transform(cet, Year = (Year <- rep(Years, times = 12)),
nMonth = rep(1:12, each = length(Years)),
Date = as.Date(paste(Year, Month, "15", sep = "-"),format = "%Y-%b-%d"))
cet <- cet[with(cet, order(Date)), ]
idx <- cet$Year > 1900
cet <- cet[idx,]
cet <- cet[,c('Date','Temperature')]
plot(cet, type = 'l')
This demonstrates the monthly temperature cycle from 1900 to 2014 in England, UK.
I would like to evaluate the phase and amplitude of the seasonal cycle of temperature follwowing the methods outlined in this paper. Specifically, they describe that given 12 monthly values (as we have here) we can estimate the yearly component as:
where X(t) represents 12 monthly values of surface temperature, x(t+t0), t = 0.5,...,11.5, are 12 monthly values of the de-meaned monthly temperature, where the factor of two is to account for both positive and negative frequencies.
Then the amplitude and phase of the seasonal cycle can be calculated as
and
They specify, that each year of data, they calculate the yearly (one cycle per year) sinusoidal component using the Fourier transform, as the equation shown above.
I'm a bit stuck on how to generate the time series they demonstrate here. Can anyone please provide some guidance as to how I can reproduce these methods. Note, I also work in matlab - in case anyone has some suggestions as to how this would be achieved in that environment.
Here is a subset of the data.
Date Temperature
1980-01-15 2.3
1980-02-15 5.7
1980-03-15 4.7
1980-04-15 8.8
1980-05-15 11.2
1980-06-15 13.8
1980-07-15 14.7
1980-08-15 15.9
1980-09-15 14.7
1980-10-15 9
1980-11-15 6.6
1980-12-15 5.6
1981-01-15 4.9
1981-02-15 3
1981-03-15 7.9
1981-04-15 7.8
1981-05-15 11.2
1981-06-15 13.2
1981-07-15 15.5
1981-08-15 16.2
1981-09-15 14.5
1981-10-15 8.6
1981-11-15 7.8
1981-12-15 0.3
1982-01-15 2.6
1982-02-15 4.8
1982-03-15 6.1
1982-04-15 8.6
1982-05-15 11.6
1982-06-15 15.5
1982-07-15 16.5
1982-08-15 15.7
1982-09-15 14.2
1982-10-15 10.1
1982-11-15 8
1982-12-15 4.4
1983-01-15 6.7
1983-02-15 1.7
1983-03-15 6.4
1983-04-15 6.8
1983-05-15 10.3
1983-06-15 14.4
1983-07-15 19.5
1983-08-15 17.3
1983-09-15 13.7
1983-10-15 10.5
1983-11-15 7.5
1983-12-15 5.6
1984-01-15 3.8
1984-02-15 3.3
1984-03-15 4.7
1984-04-15 8.1
1984-05-15 9.9
1984-06-15 14.5
1984-07-15 16.9
1984-08-15 17.6
1984-09-15 13.7
1984-10-15 11.1
1984-11-15 8
1984-12-15 5.2
1985-01-15 0.8
1985-02-15 2.1
1985-03-15 4.7
1985-04-15 8.3
1985-05-15 10.9
1985-06-15 12.7
1985-07-15 16.2
1985-08-15 14.6
1985-09-15 14.6
1985-10-15 11
1985-11-15 4.1
1985-12-15 6.3
1986-01-15 3.5
1986-02-15 -1.1
1986-03-15 4.9
1986-04-15 5.8
1986-05-15 11.1
1986-06-15 14.8
1986-07-15 15.9
1986-08-15 13.7
1986-09-15 11.3
1986-10-15 11
1986-11-15 7.8
1986-12-15 6.2
1987-01-15 0.8
1987-02-15 3.6
1987-03-15 4.1
1987-04-15 10.3
1987-05-15 10.1
1987-06-15 12.8
1987-07-15 15.9
1987-08-15 15.6
1987-09-15 13.6
1987-10-15 9.7
1987-11-15 6.5
1987-12-15 5.6
1988-01-15 5.3
1988-02-15 4.9
1988-03-15 6.4
1988-04-15 8.2
1988-05-15 11.9
1988-06-15 14.4
1988-07-15 14.7
1988-08-15 15.2
1988-09-15 13.2
1988-10-15 10.4
1988-11-15 5.2
1988-12-15 7.5
1989-01-15 6.1
1989-02-15 5.9
1989-03-15 7.5
1989-04-15 6.6
1989-05-15 13
1989-06-15 14.6
1989-07-15 18.2
1989-08-15 16.6
1989-09-15 14.7
1989-10-15 11.7
1989-11-15 6.2
1989-12-15 4.9
1990-01-15 6.5
1990-02-15 7.3
1990-03-15 8.3
1990-04-15 8
1990-05-15 12.6
1990-06-15 13.6
1990-07-15 16.9
1990-08-15 18
1990-09-15 13.2
1990-10-15 11.9
1990-11-15 6.9
1990-12-15 4.3
1991-01-15 3.3
1991-02-15 1.5
1991-03-15 7.9
1991-04-15 7.9
1991-05-15 10.8
1991-06-15 12.1
1991-07-15 17.3
1991-08-15 17.1
1991-09-15 14.7
1991-10-15 10.2
1991-11-15 6.8
1991-12-15 4.7
1992-01-15 3.7
1992-02-15 5.4
1992-03-15 7.5
1992-04-15 8.7
1992-05-15 13.6
1992-06-15 15.7
1992-07-15 16.2
1992-08-15 15.3
1992-09-15 13.4
1992-10-15 7.8
1992-11-15 7.4
1992-12-15 3.6
1993-01-15 5.9
1993-02-15 4.6
1993-03-15 6.7
1993-04-15 9.5
1993-05-15 11.4
1993-06-15 15
1993-07-15 15.2
1993-08-15 14.6
1993-09-15 12.4
1993-10-15 8.5
1993-11-15 4.6
1993-12-15 5.5
1994-01-15 5.3
1994-02-15 3.2
1994-03-15 7.7
1994-04-15 8.1
1994-05-15 10.7
1994-06-15 14.5
1994-07-15 18
1994-08-15 16
1994-09-15 12.7
1994-10-15 10.2
1994-11-15 10.1
1994-12-15 6.4
1995-01-15 4.8
1995-02-15 6.5
1995-03-15 5.6
1995-04-15 9.1
1995-05-15 11.6
1995-06-15 14.3
1995-07-15 18.6
1995-08-15 19.2
1995-09-15 13.7
1995-10-15 12.9
1995-11-15 7.7
1995-12-15 2.3
1996-01-15 4.3
1996-02-15 2.5
1996-03-15 4.5
1996-04-15 8.5
1996-05-15 9.1
1996-06-15 14.4
1996-07-15 16.5
1996-08-15 16.5
1996-09-15 13.6
1996-10-15 11.7
1996-11-15 5.9
1996-12-15 2.9
1997-01-15 2.5
1997-02-15 6.7
1997-03-15 8.4
1997-04-15 9
1997-05-15 11.5
1997-06-15 14.1
1997-07-15 16.7
1997-08-15 18.9
1997-09-15 14.2
1997-10-15 10.2
1997-11-15 8.4
1997-12-15 5.8
1998-01-15 5.2
1998-02-15 7.3
1998-03-15 7.9
1998-04-15 7.7
1998-05-15 13.1
1998-06-15 14.2
1998-07-15 15.5
1998-08-15 15.9
1998-09-15 14.9
1998-10-15 10.6
1998-11-15 6.2
1998-12-15 5.5
1999-01-15 5.5
1999-02-15 5.3
1999-03-15 7.4
1999-04-15 9.4
1999-05-15 12.9
1999-06-15 13.9
1999-07-15 17.7
1999-08-15 16.1
1999-09-15 15.6
1999-10-15 10.7
1999-11-15 7.9
1999-12-15 5
2000-01-15 4.9
2000-02-15 6.3
2000-03-15 7.6
2000-04-15 7.8
2000-05-15 12.1
2000-06-15 15.1
2000-07-15 15.5
2000-08-15 16.6
2000-09-15 14.7
2000-10-15 10.3
2000-11-15 7
2000-12-15 5.8
2001-01-15 3.2
2001-02-15 4.4
2001-03-15 5.2
2001-04-15 7.7
2001-05-15 12.6
2001-06-15 14.3
2001-07-15 17.2
2001-08-15 16.8
2001-09-15 13.4
2001-10-15 13.3
2001-11-15 7.5
2001-12-15 3.6
2002-01-15 5.5
2002-02-15 7
2002-03-15 7.6
2002-04-15 9.3
2002-05-15 11.8
2002-06-15 14.4
2002-07-15 16
2002-08-15 17
2002-09-15 14.4
2002-10-15 10.1
2002-11-15 8.5
2002-12-15 5.7
2003-01-15 4.5
2003-02-15 3.9
2003-03-15 7.5
2003-04-15 9.6
2003-05-15 12.1
2003-06-15 16.1
2003-07-15 17.6
2003-08-15 18.3
2003-09-15 14.3
2003-10-15 9.2
2003-11-15 8.1
2003-12-15 4.8
2004-01-15 5.2
2004-02-15 5.4
2004-03-15 6.5
2004-04-15 9.4
2004-05-15 12.1
2004-06-15 15.3
2004-07-15 15.8
2004-08-15 17.6
2004-09-15 14.9
2004-10-15 10.5
2004-11-15 7.7
2004-12-15 5.4
2005-01-15 6
2005-02-15 4.3
2005-03-15 7.2
2005-04-15 8.9
2005-05-15 11.4
2005-06-15 15.5
2005-07-15 16.9
2005-08-15 16.2
2005-09-15 15.2
2005-10-15 13.1
2005-11-15 6.2
2005-12-15 4.4
2006-01-15 4.3
2006-02-15 3.7
2006-03-15 4.9
2006-04-15 8.6
2006-05-15 12.3
2006-06-15 15.9
2006-07-15 19.7
2006-08-15 16.1
2006-09-15 16.8
2006-10-15 13
2006-11-15 8.1
2006-12-15 6.5
2007-01-15 7
2007-02-15 5.8
2007-03-15 7.2
2007-04-15 11.2
2007-05-15 11.9
2007-06-15 15.1
2007-07-15 15.2
2007-08-15 15.4
2007-09-15 13.8
2007-10-15 10.9
2007-11-15 7.3
2007-12-15 4.9
2008-01-15 6.6
2008-02-15 5.4
2008-03-15 6.1
2008-04-15 7.9
2008-05-15 13.4
2008-06-15 13.9
2008-07-15 16.2
2008-08-15 16.2
2008-09-15 13.5
2008-10-15 9.7
2008-11-15 7
2008-12-15 3.5
2009-01-15 3
2009-02-15 4.1
2009-03-15 7
2009-04-15 10
2009-05-15 12.1
2009-06-15 14.8
2009-07-15 16.1
2009-08-15 16.6
2009-09-15 14.2
2009-10-15 11.6
2009-11-15 8.7
2009-12-15 3.1
2010-01-15 1.4
2010-02-15 2.8
2010-03-15 6.1
2010-04-15 8.8
2010-05-15 10.7
2010-06-15 15.2
2010-07-15 17.1
2010-08-15 15.3
2010-09-15 13.8
2010-10-15 10.3
2010-11-15 5.2
2010-12-15 -0.7
2011-01-15 3.7
2011-02-15 6.4
2011-03-15 6.7
2011-04-15 11.8
2011-05-15 12.2
2011-06-15 13.8
2011-07-15 15.2
2011-08-15 15.4
2011-09-15 15.1
2011-10-15 12.6
2011-11-15 9.6
2011-12-15 6
2012-01-15 5.4
2012-02-15 3.8
2012-03-15 8.3
2012-04-15 7.2
2012-05-15 11.7
2012-06-15 13.5
2012-07-15 15.5
2012-08-15 16.6
2012-09-15 13
2012-10-15 9.7
2012-11-15 6.8
2012-12-15 4.8
2013-01-15 3.5
2013-02-15 3.2
2013-03-15 2.7
2013-04-15 7.5
2013-05-15 10.4
2013-06-15 13.6
2013-07-15 18.3
2013-08-15 16.9
2013-09-15 13.7
2013-10-15 12.5
2013-11-15 6.2
2013-12-15 6.3
2014-01-15 5.7
2014-02-15 6.2
2014-03-15 7.6
2014-04-15 10.2
2014-05-15 12.2
2014-06-15 15.1
2014-07-15 17.7
2014-08-15 14.9
2014-09-15 15.1
2014-10-15 12.5
2014-11-15 8.6
2014-12-15 5.2
Literally, the formula for Y can be represented in MATLAB as:
t=0.5:0.5:11.5; %//make sure the step size is indeed 0.5
Y = 1/6.*sum(exp(2*pi*i.*t/12).*X(t0-t); %// add the function for X
phi = atan2(imag(Y)/real(Y)); %// seasonal phase
without knowing the function for X I can't be sure this can indeed be vectorised, or whether you'd have to loop, which can be done like:
t=0.5:0.5:11.5; %//make sure the step size is indeed 0.5
Ytmp(numel(t),1)=0; %// initialise output
for ii = 1:numel(t)
Ytmp(ii,1) = exp(2*pi*i.*t(ii)/12).*X(t0-t(ii));
end
Y = 1/6 * sum(Ytmp)
Just slot in any t0 you want, loop over the codes above and you have your time series.
I need to read the data from this link http://www.bls.gov/cpi/cpifiles/cpiai.txt into a data frame. Sadly the data is not in a csv file. What is the best way of doing it?
I tried
cpiai <- read.table("http://www.bls.gov/cpi/cpifiles/cpiai.txt")
Thanks!
Sticking to read.table:
path<-"http://www.bls.gov/cpi/cpifiles/cpiai.txt"
cpiai <- read.table(path,header=T,fill=TRUE,skip=16)
>head(cpiai)
Year Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec. Avg. Dec Avg
1 1913 9.8 9.8 9.8 9.8 9.7 9.8 9.9 9.9 10.0 10.0 10.1 10.0 9.9 NA NA
2 1914 10.0 9.9 9.9 9.8 9.9 9.9 10.0 10.2 10.2 10.1 10.2 10.1 10.0 1.0 1.0
3 1915 10.1 10.0 9.9 10.0 10.1 10.1 10.1 10.1 10.1 10.2 10.3 10.3 10.1 2.0 1.0
4 1916 10.4 10.4 10.5 10.6 10.7 10.8 10.8 10.9 11.1 11.3 11.5 11.6 10.9 12.6 7.9
5 1917 11.7 12.0 12.0 12.6 12.8 13.0 12.8 13.0 13.3 13.5 13.5 13.7 12.8 18.1 17.4
6 1918 14.0 14.1 14.0 14.2 14.5 14.7 15.1 15.4 15.7 16.0 16.3 16.5 15.1 20.4 18.0
The answer by J.R. gives you all you need to know, but just to be complete, also consider access via Quandl which curates the data and also gives you a unified (free) API across the millions of series they track.
For this CPI the page is https://www.quandl.com/FRED/CPIAUCSL-Consumer-Price-Index-for-All-Urban-Consumers-All-Items-USA-Inflation and access is as easy as
R> library(Quandl)
R> dat <- Quandl("FRED/CPIAUCSL")
R> head(dat)
Date Value
1 2014-09-01 237.633
2 2014-08-01 237.428
3 2014-07-01 237.909
4 2014-06-01 237.693
5 2014-05-01 237.083
6 2014-04-01 236.254
R>
I have a dataset of timeseries (30 years). I did a subset for the month and the date I want (shown below in the code). Is there a way to do a loop for each month and the days in those month? Also, is there a way to save the plots automatically, in different folders corresponding to each month? Right now I am doing it manually by changing the month and date which corresponds to dfOct31all <- df [ which(df$Month==10 & df$Day==31), ]in the code below then plotting and saving it. By the way, I'm using RStudio.
Can someone please guide me?
Thanks!
setwd("WDir")
df <- read.csv("Velocity.csv", header = TRUE)
attach(df)
#Day 31
dfOct31all <- df [ which(df$Month==10 & df$Day==31), ]
dfall31Mbs <- dfOct31all[c(-1,-2,-3)]
densities <- lapply(dfall31Mbs, density)
par(mfcol=c(5,5), oma=c(1,1,0,0), mar=c(1,1,1,0), tcl=-0.1, mgp=c(0,0,0))
plot(densities[[1]], col="black",main = "1000mb",xlab=NA,ylab=NA)
plot(densities[[2]], col="black",main="925mb",xlab=NA,ylab=NA)
plot(densities[[3]], col="black",main="850mb",xlab=NA,ylab=NA)
plot(densities[[4]], col="black",main="700mb",xlab=NA,ylab=NA)
plot(densities[[5]], col="black",main="600mb",xlab=NA,ylab=NA)
plot(densities[[6]], col="black",main="500mb",xlab=NA,ylab=NA)
plot(densities[[7]], col ="black",main="400mb",xlab=NA,ylab=NA)
plot(densities[[8]], col="black",main="300mb",xlab=NA,ylab=NA)
plot(densities[[9]], col="black",main="250mb",xlab=NA,ylab=NA)
plot(densities[[10]], col="black",main="200mb",xlab=NA,ylab=NA)
plot(densities[[11]], col= "black",main="150mb",xlab=NA,ylab=NA)
plot(densities[[12]], col= "black",main="100mb",xlab=NA,ylab=NA)
plot(densities[[13]], col = "black",main="70mb",xlab=NA,ylab=NA)
plot(densities[[14]], col="black",main="50mb",xlab=NA,ylab=NA)
plot(densities[[15]], col="black",main="30mb",xlab=NA,ylab=NA)
plot(densities[[16]], col = "black",main="20mb",xlab=NA,ylab=NA)
plot(densities[[17]], col="black",main="10mb",xlab=NA,ylab=NA)
Snippet of data is shown as well
Year Month Day 1000mb 925mb 850mb 700mb 600mb 500mb 400mb 300mb 250mb 200mb 150mb 100mb 70mb 50mb 30mb 20mb 10mb
1984 10 31 6 6.6 7.9 11.5 14.6 17 20.8 25.8 26.4 25.3 24.4 22.7 19.9 19.2 20.4 24.8 30.8
1985 10 31 5.8 7.1 7.7 11.5 14.7 17.3 25.3 32.6 32.9 32.4 27.1 20.9 14.2 9.7 6.4 7.3 7.4
1986 10 31 4.3 6.1 7.7 11.3 18.4 26.3 34.4 44.5 48.9 46.2 34.5 20.4 13.8 13.2 21.7 31 46.4
1987 10 31 2.2 2.9 4 7 9 13.9 19.9 25.8 26.6 23.7 17.3 12 7 3.1 1.7 5.8 14.1
1988 10 31 2.5 2.1 2.3 6.5 6.4 5.1 7.4 12.1 13.4 16.1 16.7 15.2 8.8 5 2.8 6.2 8.9
1989 10 31 3.4 4 4.7 4.4 4.1 4 4.6 4.8 5.9 5.6 10.9 13.9 12.3 10.4 8.1 8 8
1990 10 31 4 4.9 7.5 14.6 19 21.9 25.7 28.3 29.4 29.2 27.3 18 12.6 10.1 9 12 19.9
1991 10 31 2.8 3.2 4 10.8 12.1 11.2 9.9 9.1 9.9 12.8 18 17.5 10.4 6.3 4.2 7.6 11.7
1992 10 31 5.9 6.9 7.9 13.1 17.9 25.2 34.6 47.3 53.3 53 42.4 21.3 11.6 6 4.6 8.5 12.8
1993 10 31 2.3 1.5 0.4 3.6 6.3 10.1 14.3 19.1 21.6 21.8 18.4 13.6 12.3 9.5 6.9 11 18.1
1994 10 31 2 2.2 3.8 11.6 17 19.8 23.6 24.9 25.5 26.2 28.4 25.2 16.7 13.6 9.3 8.3 9.8
1995 10 31 1.5 2 3.4 7.6 9.1 11.2 13.7 17.9 20.3 21.7 21.1 16.7 13 12.1 14.9 21.4 27.3
1996 10 31 1.9 2.4 3.5 8 11.7 17.4 26.4 35.6 33.3 24.6 12.4 4.1 0.5 3.4 7.2 9.4 11.6
1997 10 31 3.7 4.8 7.8 19.2 24.6 29.6 35.6 41 41.8 42 37.9 23.7 11.2 8.6 4.2 3.8 7
1998 10 31 0.7 1.1 0.9 4.8 8.4 11.4 14 25.3 29.7 25.2 15.9 6.6 2.1 1 4.5 8.9 6.1
1999 10 31 1.9 1.6 2.4 10.7 15.3 19 23.2 29 32.4 31.9 28 20.3 10.8 9.4 12 14.5 16.9
2000 10 31 5.1 5.8 6.7 12.8 18.2 23.9 29.9 40.7 42.2 33.7 23.5 12.7 2.6 1.6 3.8 4.7 5.1
2001 10 31 5.7 6.1 7.1 10.1 10.8 14.7 18.3 22.8 22.3 22.2 22 14 9.5 6.6 5.2 6.5 8.6
2002 10 31 1.4 1.6 1.8 9.2 14.5 19.5 24.8 30 30.5 27.6 22.2 13.9 9.1 7.1 8.5 16.1 23.8
2003 10 31 1.5 1.3 0.7 1 3.5 6 11.7 21.5 21.9 22.9 23 20.7 15.8 12.5 14.5 20.1 26
2004 10 31 5.4 5.6 6.9 14.4 23.3 33.3 46.1 60.9 62.1 54.6 42.9 28 17.3 12.3 10.1 13.6 13.3
2005 10 31 1.7 1.3 3 10.3 15.8 19.5 21.1 22.8 24.1 24.5 24.5 20.6 13.5 10.7 10 10.7 10.4
2006 10 31 2.3 1.5 1.7 8.7 12.5 15.9 18.7 20.5 21.8 24.3 29.9 25.3 18.3 12.8 7.7 8.8 12.4
2007 10 31 3.7 2.7 2.3 2.2 2.6 4.2 6.5 11.9 15.9 19.6 17.2 9.5 6.9 5.7 4.9 5.8 11.7
2008 10 31 7.7 10.8 14.3 20.3 23 25.8 27.4 32.1 35.4 34.8 25.8 13.2 7.1 2.9 2.6 3.4 6
2009 10 31 0.5 0.2 2 9.3 13.5 17.6 18.8 20.8 21.4 21.2 18.9 14.2 11.1 6.4 1.9 3 8
2010 10 31 5.6 6.8 8.5 13.4 16.5 20.3 23.8 26.8 31 28.1 24 15.7 9.9 7 4.8 3.9 1.8
2011 10 31 5.9 6.7 5.6 7.9 10.3 11.8 12.5 16.2 19.5 21.4 17.9 13.2 9.6 7.9 8 8.3 10.8
2012 10 31 4.8 6.3 9.4 19.5 24.2 27.2 27.5 27.3 27.7 30.7 27.5 16.7 10 7.6 8 13.8 19.7
2013 10 31 1.4 1.9 3.9 9.1 13.1 17.3 22.9 29.7 30.4 27.3 23.5 18.2 13.1 6.3 4.4 2.4 9.4
I wrote it out for each day rather than doing a loop.
I'm using R for the analysis of my master thesis
I have the following data frame: STOF: Student to staff ratio
HEI.ID X2007 X2008 X2009 X2010 X2011 X2012
1 OP 41.8 147.6 90.3 82.9 106.8 63.0
2 MO 20.0 20.8 21.1 20.9 12.6 20.6
3 SD 21.2 32.3 25.7 23.9 25.0 40.1
4 UN 51.8 39.8 19.9 20.9 21.6 22.5
5 WS 18.0 19.9 15.3 13.6 15.7 15.2
6 BF 11.5 36.9 20.0 23.2 18.2 23.8
7 ME 34.2 30.3 28.4 30.1 31.5 25.6
8 IM 7.7 18.1 20.5 14.6 17.2 17.1
9 OM 11.4 11.2 12.2 11.1 13.4 19.2
10 DC 14.3 28.7 20.1 17.0 22.3 16.2
11 OC 28.6 44.0 24.9 27.9 34.0 30.7
Then I rank colleges using this commend
HEIrank1<-(STOF[,-c(1)])
rank1 <- apply(HEIrank1,2,rank)
> HEIrank11
HEI.ID X2007 X2008 X2009 X2010 X2011 X2012
1 OP 18.0 20 20.0 20.0 20.0 20
2 MO 14.0 9 13.0 13.5 2.0 12
3 SD 15.0 16 17.0 16.0 16.0 19
4 UN 20.0 18 8.0 13.5 14.0 13
5 WS 12.0 8 4.0 7.0 6.0 8
6 BF 6.5 17 9.5 15.0 10.0 14
7 ME 17.0 15 19.0 19.0 17.0 15
8 IM 2.0 6 12.0 8.0 8.5 10
9 OM 4.5 3 2.5 3.0 3.0 11
10 DC 11.0 14 11.0 9.0 15.0 9
11 OC 16.0 19 16.0 18.0 19.0 17
I would like to draw histogram for each HEIs (for each row)?
If you use ggplot you won't need to do it as a loop, you can plot them all at once. Also, you need to reformat your data so that it's in long format not short format. You can use the melt function from the reshape package to do so.
library(reshape2)
new.df<-melt(HEIrank11,id.vars="HEI.ID")
names(new.df)=c("HEI.ID","Year","Rank")
substring is just getting rid of the X in each year
library(ggplot2)
ggplot(new.df, aes(x=HEI.ID,y=Rank,fill=substring(Year,2)))+
geom_histogram(stat="identity",position="dodge")
Here's a solution in lattice:
require(lattice)
barchart(X2007+X2008+X2009+X2010+X2011+X2012 ~ HEI.ID,
data=HEIrank11,
auto.key=list(space='right')
)