Why 2 ^ 3 ^ 4 = 0 in Julia? - julia

I just read a post from Quora:
http://www.quora.com/Is-Julia-ready-for-production-use
At the bottom, there's an answer said:
2 ^ 3 ^ 4 = 0
I tried it myself:
julia> 2 ^ 3 ^ 4
0
Personally I don't consider this a bug in the language. We can add parenthesis for clarity, both for Julia and for our human beings:
julia> (2 ^ 3) ^ 4
4096
So far so good; however, this doesn't work:
julia> 2 ^ (3 ^ 4)
0
Since I'm learning, I'd like to know, how Julia evaluate this expression to 0? What's the evaluation precedent?
julia> typeof(2 ^ 3 ^ 4)
Int64

I'm surprised I couldn't find a duplicate question about this on SO yet. I figure I'll answer this slightly differently than the FAQ in the manual since it's a common first question. Oops, I somehow missed: Factorial function works in Python, returns 0 for Julia
Imagine you've been taught addition and multiplication, but never learned any numbers higher than 99. As far as you're concerned, numbers bigger than that simply don't exist. So you learned to carry ones into the tens column, but you don't even know what you'd call the column you'd carry tens into. So you just drop them. As long as your numbers never get bigger than 99, everything will be just fine. Once you go over 99, you wrap back down to 0. So 99+3 ≡ 2 (mod 100). And 52*9 ≡ 68 (mod 100). Any time you do a multiplication with more than two factors of 10, your answer will be zero: 25*32 ≡ 0 (mod 100). Now, after you do each computation, someone could ask you "did you go over 99?" But that takes time to answer… time that could be spent computing your next math problem!
This is effectively how computers natively do arithmetic, except they do it in binary with 64 bits. You can see the individual bits with the bits function:
julia> bits(45)
"0000000000000000000000000000000000000000000000000000000000101101"
As we multiply it by 2, 101101 will shift to the left (just like multiplying by 10 in decimal):
julia> bits(45 * 2)
"0000000000000000000000000000000000000000000000000000000001011010"
julia> bits(45 * 2 * 2)
"0000000000000000000000000000000000000000000000000000000010110100"
julia> bits(45 * 2^58)
"1011010000000000000000000000000000000000000000000000000000000000"
julia> bits(45 * 2^60)
"1101000000000000000000000000000000000000000000000000000000000000"
… until it starts falling off the end. If you multiply more than 64 twos together, the answer will always zero (just like multiplying more than two tens together in the example above). We can ask the computer if it overflowed, but doing so by default for every single computation has some serious performance implications. So in Julia you have to be explicit. You can either ask Julia to check after a specific multiplication:
julia> Base.checked_mul(45, 2^60) # or checked_add for addition
ERROR: OverflowError()
in checked_mul at int.jl:514
Or you can promote one of the arguments to a BigInt:
julia> bin(big(45) * 2^60)
"101101000000000000000000000000000000000000000000000000000000000000"
In your example, you can see that the answer is 1 followed by 81 zeros when you use big integer arithmetic:
julia> bin(big(2) ^ 3 ^ 4)
"1000000000000000000000000000000000000000000000000000000000000000000000000000000000"
For more details, see the FAQ: why does julia use native machine integer arithmetic?

Related

Why does Julia return different results for equivalent expressions? 6÷2(1+2) and 6÷2*(1+2)

I typed the following in Julia's REPL:
julia> 6÷2(1+2)
1
julia> 6÷2*(1+2)
9
Why are the different results output?
Presh Talwalkar says 9 is correct in the movie
6÷2(1+2) = ? Mathematician Explains The Correct Answer - YouTube
YouTube notwithstanding, there is no correct answer. Which answer you get depends on what precedence convention you use to interpret the problem. Many of these viral "riddles" that go around periodically are contentious precisely because they are intentionally ambiguous. Not a math puzzle really, it's just a parsing problem. It's no deeper than someone saying a sentence with two interpretations. What do you do in that case in real life? You just ask which one they meant. This is no different. For this very reason, the ÷ symbol isn't often used in real mathematical notation—fraction notation is used instead, which clearly disambiguates this as either:
6
- (1 + 2) = 9
2
or as
6
--------- = 1
2 (1 + 2)
Regarding Julia specifically, this precedence behavior is documented here:
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#man-numeric-literal-coefficients
Specifically:
The precedence of numeric literal coefficients is slightly lower than that of unary operators such as negation. So -2x is parsed as (-2) * x and √2x is parsed as (√2) * x. However, numeric literal coefficients parse similarly to unary operators when combined with exponentiation. For example 2^3x is parsed as 2^(3x), and 2x^3 is parsed as 2*(x^3).
and the note:
The precedence of numeric literal coefficients used for implicit multiplication is higher than other binary operators such as multiplication (*), and division (/, \, and //). This means, for example, that 1 / 2im equals -0.5im and 6 // 2(2 + 1) equals 1 // 1.

'Big' fractions in Julia

I've run across a little problem when trying to solve a Project Euler problem in Julia. I've basically written a recursive function which produces fractions with increasingly large numerators and denominators. I don't want to post the code for obvious reasons, but the last few fractions are as follows:
1180872205318713601//835002744095575440
2850877693509864481//2015874949414289041
6882627592338442563//4866752642924153522
At that point I get an OverflowError(), presumably because the numerator and/or denominator now exceeds 19 digits. Is there a way of handling 'Big' fractions in Julia (i.e. those with BigInt-type numerators and denominators)?
Addendum:
OK, I've simplified the code and disguised it a bit. If anyone wants to wade through 650 Project Euler problems to try to work out which question it is, good luck to them – there will probably be around 200 better solutions!
function series(limit::Int64, i::Int64=1, n::Rational{Int64}=1//1)
while i <= limit
n = 1 + 1//(1 + 2n)
println(n)
return series(limit, i + 1, n)
end
end
series(50)
If I run the above function with, say, 20 as the argument it runs fine. With 50 I get the OverflowError().
Julia defaults to using machine integers. For more information on this see the FAQ: Why does Julia use native machine integer arithmetic?.
In short: the most efficient integer operations on any modern CPU involves computing on a fixed number of bits. On your machine, that's 64 bits.
julia> 9223372036854775805 + 1
9223372036854775806
julia> 9223372036854775805 + 2
9223372036854775807
julia> 9223372036854775805 + 3
-9223372036854775808
Whoa! What just happened!? That's definitely wrong! It's more obvious if you look at how these numbers are represented in binary:
julia> bitstring(9223372036854775805 + 1)
"0111111111111111111111111111111111111111111111111111111111111110"
julia> bitstring(9223372036854775805 + 2)
"0111111111111111111111111111111111111111111111111111111111111111"
julia> bitstring(9223372036854775805 + 3)
"1000000000000000000000000000000000000000000000000000000000000000"
So you can see that those 63 bits "ran out of space" and rolled over — the 64th bit there is called the "sign bit" and signals a negative number.
There are two potential solutions when you see overflow like this: you can use "checked arithmetic" — like the rational code does — that ensures you don't silently have this problem:
julia> Base.Checked.checked_add(9223372036854775805, 3)
ERROR: OverflowError: 9223372036854775805 + 3 overflowed for type Int64
Or you can use a bigger integer type — like the unbounded BigInt:
julia> big(9223372036854775805) + 3
9223372036854775808
So an easy fix here is to remove your type annotations and dynamically choose your integer types based upon limit:
function series(limit, i=one(limit), n=one(limit)//one(limit))
while i <= limit
n = 1 + 1//(1 + 2n)
println(n)
return series(limit, i + 1, n)
end
end
julia> series(big(50))
#…
1186364911176312505629042874//926285732032534439103474303
4225301286417693889465034354//3299015554385159450361560051

DFA to mathematical notation

Let's say I have a DFA with alphabet {0,1} which basically accepts any strings as long as there is no consecutive 0's (at most one 0 at a time). How do I express this in a mathematical notation?
I was thinking of any number of 1's followed by either one or none 0's, then any number of 1's..... but couldn't figure out the appropriate mathematical notation for it.
My attempt but obviously incorrect since 1010 should be accepted but the notation does not indicate so:
As a regular expression you could write this as 1*(01+)*0?. Arbitrary many ones, then arbitrary many groups of exactly one zero followed by at least one one, and in the end possibly one zero. Nico already wrote as much in a comment. Personally I'd consider such a regular expression sufficiently formal to call it mathematical.
Now if you want to write this using exponents, you could do something like
L = {1a (0 11+bi)c 0d mod 2 | a,bi,c,d ∈ ℕ for 1≤i≤c}
Writing a bit of formula in the exponents has the great benefit that you don't have to split the place where you use the exponent and the place where you define the range. Here all my numbers are natural numbers (including zero). Adding one means at least one repetition. And the modulo 2 makes the exponent 0 or 1 to express the ? in the regular expression.
Of course, there is an implied assumption here, namely that the c serves as a kind of loop, but it doesn't repeat the same expression every time, but the bi changes for each iteration. The range of the i implies this interpretation, but it might be considered confusing or even incorrect nonetheless.
The proper solution here would be using some formal product notation using a big ∏ with a subscript i = 1 and a superscript c. That would indicate that for every i from 1 through c you want to compute the given expression (i.e. 011+bi) and concatenate all the resulting words.
You could also give a recursive definition: The minimal fixpoint of the following definition
L' = {1, 10} ∪ {1a 0 b | a ∈ ℕ, a > 0, b ∈ L'}
is the language of all words which begin with a 1 and satisfy your conditions. From this you can build
L = {ε, 0} ∪ L' ∪ {0 a | a ∈ L'}
so you add the empty word and the lone zero, then take all the words from L' in their unmodified form and in the form with a zero added in front.

Project Euler #211 - efficiency issue

I've been slowly working my way through the list of Project Euler problems, and I've come to one that I know how to solve, but it seems like I can't (given the way my solution was written).
I am using Common Lisp to do this with and my script has been running for over 24 hours (well over their one minute goal).
For the sake of conciseness, here's my solution (it's a spoiler, but only if you have one hell of a fast processor):
(defun square? (num)
(if (integerp (sqrt num)) T))
(defun factors (num)
(let ((l '()))
(do ((current 1 (1+ current)))
((> current (/ num current)))
(if (= 0 (mod num current))
(if (= current (/ num current))
(setf l (append l (list current)))
(setf l (append l (list current (/ num current)))))))
(sort l #'< )))
(defun o_2 (n)
(reduce #'+ (mapcar (lambda (x) (* x x)) (factors n))))
(defun sum-divisor-squares (limit)
(loop for i from 1 to limit when (square? (o_2 i)) summing i))
(defun euler-211 ()
(sum-divisor-squares 64000000))
The time required to solve the problem using smaller, more friendly, test arguments seems to grow larger than exponentialy... which is a real problem.
It took:
0.007 seconds to solve for 100
0.107 seconds to solve for 1000
2.020 seconds to solve for 10000
56.61 seconds to solve for 100000
1835.385 seconds to solve for 1000000
24+ hours to solve for 64000000
I'm really trying to figure out which part(s) of the script is causing it to take so long. I've put some thought into memoizing the factors function, but I'm at a loss as to how to actually implement that.
For those that want to take a look at the problem itself, here it be.
Any ideas on how to make this thing go faster would be greatly appreciated.
**sorry if this is a spoiler to anyone, it's not meant to be.... but if you have the computing power to run this in a decent amount of time, more power to you.
Here's a solution, keeping in mind the spirit of [Project] Euler. [Warning: spoiler. I've tried to keep the hints slow, so that you can read only part of the answer and think on your own if you want. :)]
When you are confronted with a problem having to do with numbers, one good strategy (as you probably already know from solving 210 Project Euler problems) is to look at small examples, find a pattern, and prove it. [The last part may be optional depending on your attitude to mathematics ;-)]
In this problem, though, looking at small examples -- for n=1,2,3,4,... will probably not give you any hint. But there is another sense of "small examples" when dealing with number-theoretic problems, which you also probably know by now -- primes are the building blocks of the natural numbers, so start with the primes.
For a prime number p, its only divisors are 1 and p, so the sum of the squares of its divisors is 1+p2.
For a prime power pk, its only divisors are 1, p, p2, … pk, so the sum of the squares of its divisors is 1+p+p2+…+pk=(pk+1-1)/(p-1).
That was the simplest case: you've solved the problem for all numbers with only one prime factor.
So far nothing special. Now suppose you have a number n that has two prime factors, say n=pq. Then its factors are 1, p, q, and pq, so the sum of the squares of its divisors is 1+p2+q2+p2q2=(1+p2)(1+q2).
What about n=paqb? What is the sum of the squares of its factors?
[............................Dangerous to read below this line...................]
It is ∑0≤c≤a, 0≤d≤b(pcqd)2 = ((pa+1-1)/(p-1))((qb+1-1)/(q-1)).
That should give you the hint, both on what the answer is and how to prove it: the sum of the divisors of n is simply the product of the (answer) for each of the prime powers in its factorization, so all you need to do is to factorize 64000000 (which is very easy to do even in one's head :-)) and multiply the answer for each (=both, because the only primes are 2 and 5) of its prime powers.
That solves the Project Euler problem; now the moral to take away from it.
The more general fact here is about multiplicative functions -- functions on the natural numbers such that f(mn) = f(m)f(n) whenever gcd(m,n)=1, i.e. m and n have no prime factors in common. If you have such a function, the value of the function at a particular number is completely determined by its values at prime powers (can you prove this?)
The slightly harder fact, which you can try to prove[it's not that hard], is this: if you have a multiplicative function f [here, f(n)=n2] and you define the function F as F(n) = ∑d divides nf(d), (as the problem did here) then F(n) is also a multiplicative function.
[In fact something very beautiful is true, but don't look at it just yet, and you'll probably never need it. :-)]
I think that your algorithm is not the most efficient possible. Hint: you may be starting from the wrong side.
edit: I'd like to add that choosing 64000000 as the upper limit is likely the problem poster's way of telling you to think of something better.
edit: A few efficiency hints:
instead of
(setf l (append l (...)))
you can use
(push (...) l)
which destructively modifies your list by consing a new cell with your value as car and the former l as cdr, then points l to this cell. This is much faster than appending which has to traverse the list once each. If you need the list in the other order, you can nreverse it after it is complete (but that is not needed here).
why do you sort l?
you can make (> current (/ num current)) more efficient by comparing with the square root of num instead (which only needs to be computed once per num).
is it perhaps possible to find the factors of a number more efficiently?
And a style hint: You can put the scope of l into the do declaration:
(do ((l ())
(current 1 (+ current 1)))
((> current (/ num current))
l)
...)
I would attack this by doing the prime factorization of the number (for example: 300 = 2^2 * 3^1 * 5^2), which is relatively fast, especially if you generate this by sieve. From this, it's relatively simple to generate the factors by iterating i=0..2; j=0..1; k=0..2, and doing 2^i * 3^j * 5^k.
5 3 2
-----
0 0 0 = 1
0 0 1 = 2
0 0 2 = 4
0 1 0 = 3
0 1 1 = 6
0 1 2 = 12
1 0 0 = 5
1 0 1 = 10
1 0 2 = 20
1 1 0 = 15
1 1 1 = 30
1 1 2 = 60
2 0 0 = 25
2 0 1 = 50
2 0 2 = 100
2 1 0 = 75
2 1 1 = 150
2 1 2 = 300
This might not be fast enough
The clever trick you are missing is that you don't need to factor the numbers at all
How many numbers from 1..N are multiples of 1? N
How many numbers from 1..N are multiples of 2? N/2
The trick is to sum each number's factors in a list.
For 1, add 1^2 to every number in the list. For 2, add 2^2 to every other number.
For 3, add 3^2 to every 3rd number.
Don't check for divisibility at all.
At the end, you do have to check whether the sum is a perfect square, and that's it.
In C++, this worked in 58 seconds for me.
Sorry, I don't understand LISP well enough to read your answer. But my first impression is that the time cost of the brute force solution should be:
open bracket
sqrt(k) to find the divisors of k (by trial division), square each one (constant time per factor), and sum them (constant time per factor). This is σ2(k), which I will call x.
plus
not sure what the complexity of a good integer square root algorithm is, but certainly no worse than sqrt(x) (dumb trial multiplication). x might well be big-O larger than k, so I reserve judgement here, but x is obviously bounded above by k^3, because k has at most k divisors, each itself no bigger than k and hence its square no bigger than k^2. It's been so long since my maths degree that I have no idea how fast Newton-Raphson converges, but I suspect it's faster than sqrt(x), and if all else fails a binary chop is log(x).
close bracket
multiplied by n (as k ranges 1 .. n).
So if your algorithm is worse than O(n * sqrt(n^3)) = O(n ^ (5/2)), in the dumb-sqrt case, or O(n * (sqrt(n) + log(n^3)) = O(n ^ 3/2) in the clever-sqrt case, I think something has gone wrong which should be identifiable in the algorithm. At this point I'm stuck because I can't debug your LISP.
Oh, I've assumed that arithmetic is constant-time for the numbers in use. It darn well should be for numbers as small as 64 million, and the cube of that fits in a 64bit unsigned integer, barely. But even if your LISP implementation is making arithmetic worse than O(1), it shouldn't be worse than O(log n), so it won't have much affect on the complexity. Certainly won't make it super-polynomial.
This is where someone comes along and tells me just how wrong I am.
Oops, I just looked at your actual timing figures. They aren't worse than exponential. Ignoring the first and last values (because small times aren't accurately measurable and you haven't finished, respectively), multiplying n by 10 multiplies time by no more than 30-ish. 30 is about 10^1.5, which is about right for brute force as described above.
I think you can attack this problem with something like a prime sieve. That's only my first impression though.
I've reworked the program with some notes taken from the comments here. The 'factors' function is now ever so slightly more efficient and I also had to modify the σ_(2)(n) function to accept the new output.
'factors' went from having an output like:
$ (factors 10) => (1 2 5 10)
to having one like
$ (factors 10) => ((2 5) (1 10))
Revised function looks like this:
(defun o_2 (n)
"sum of squares of divisors"
(reduce #'+ (mapcar (lambda (x) (* x x)) (reduce #'append (factors n)))))
After the modest re-writes I did, I only saved about 7 seconds in the calculation for 100,000.
Looks like I'm going to have to get off of my ass and write a more direct approach.

Fast exponentiation when only first k digits are required?

This is actually for a programming contest, but I've tried really hard and haven't got even the faintest clue how to do this.
Find the first and last k digits of nm where n and m can be very large ~ 10^9.
For the last k digits I implemented modular exponentiation.
For the first k I thought of using the binomial theorem upto certain powers but that involves quite a lot of computation for factorials and I'm not sure how to find an optimal point at which n^m can be expanded as (x+y)m.
So is there any known method to find the first k digits without performing the entire calculation?
Update 1 <= k <= 9 and k will always be <= digits in nm
not sure, but the identity nm = exp10(m log10(n)) = exp(q (m log(n)/q)) where q = log(10) comes to mind, along with the fact that the first K digits of exp10(x) = the first K digits of exp10(frac(x)) where frac(x) = the fractional part of x = x - floor(x).
To be more explicit: the first K digits of nm are the first K digits of its mantissa = exp(frac(m log(n)/q) * q), where q = log(10).
Or you could even go further in this accounting exercise, and use exp((frac(m log(n)/q)-0.5) * q) * sqrt(10), which also has the same mantissa (+ hence same first K digits) so that the argument of the exp() function is centered around 0 (and between +/- 0.5 log 10 = 1.151) for speedy convergence.
(Some examples: suppose you wanted the first 5 digits of 2100. This equals the first 5 digits of exp((frac(100 log(2)/q)-0.5)*q)*sqrt(10) = 1.267650600228226. The actual value of 2100 is 1.267650600228229e+030 according to MATLAB, I don't have a bignum library handy. For the mantissa of 21,000,000,000 I get 4.612976044195602 but I don't really have a way of checking.... There's a page on Mersenne primes where someone's already done the hard work; 220996011-1 = 125,976,895,450... and my formula gives 1.259768950493908 calculated in MATLAB which fails after the 9th digit.)
I might use Taylor series (for exp and log, not for nm) along with their error bounds, and keep adding terms until the error bounds drop below the first K digits. (normally I don't use Taylor series for function approximation -- their error is optimized to be most accurate around a single point, rather than over a desired interval -- but they do have the advantage that they're mathematically simple, and you can increased accuracy to arbitrary precision simply by adding additional terms)
For logarithms I'd use whatever your favorite approximation is.
Well. We want to calculate and to get only n first digits.
Calculate by the following iterations:
You have .
Calcluate each not exactly.
The thing is that the relative error of is less
than n times relative error of a.
You want to get final relative error less than .
Thus relative error on each step may be .
Remove last digits at each step.
For example, a=2, b=16, n=1. Final relative error is 10^{-n} = 0,1.
Relative error on each step is 0,1/16 > 0,001.
Thus 3 digits is important on each step.
If n = 2, you must save 4 digits.
2 (1), 4 (2), 8 (3), 16 (4), 32 (5), 64 (6), 128 (7), 256 (8), 512 (9), 1024 (10) --> 102,
204 (11), 408 (12), 816 (13), 1632 (14) -> 163, 326 (15), 652 (16).
Answer: 6.
This algorithm has a compexity of O(b). But it is easy to change it to get
O(log b)
Suppose you truncate at each step? Not sure how accurate this would be, but, e.g., take
n=11
m=some large number
and you want the first 2 digits.
recursively:
11 x 11 -> 121, truncate -> 12 (1 truncation or rounding)
then take truncated value and raise again
12 x 11 -> 132 truncate -> 13
repeat,
(132 truncated ) x 11 -> 143.
...
and finally add #0's equivalent to the number of truncations you've done.
Have you taken a look at exponentiation by squaring? You might be able to modify one of the methods such that you only compute what's necessary.
In my last algorithms class we had to implement something similar to what you're doing and I vaguely remember that page being useful.

Resources