I have been trying to solve this problem.
http://www.spoj.com/problems/DIV/
for calcuating interger factors, I tried two ways
first: normal sqrt(i) iteration.
int divCount = 2;
for (int j = 2; j * j <= i ; ++j) {
if( i % j == 0) {
if( i / j == j )
divCount += 1;
else
divCount += 2;
}
}
second: Using prime factorization (primes - sieve)
for(int j = 0; copy != 1; ++j){
int count = 0;
while(copy % primes.get(j) == 0){
copy /= primes.get(j);
++count;
}
divCount *= ( count + 1);}
While the output is correct, I am getting TLE. Any more optimization can be done? Please help. Thanks
You're solving the problem from the wrong end. For any number
X = p1^a1 * p2^a2 * ... * pn^an // p1..pn are prime
d(X) = (a1 + 1)*(a2 + 1)* ... *(an + 1)
For instance
50 = 4 * 25 = 2^2 * 5^2
d(50) = (1 + 2) * (1 + 2) = 9
99 = 3^2 * 11^1
d(99) = (2 + 1) * (1 + 1) = 6
So far so good you need to generate all the numbers such that
X = p1^a1 * p2^a2 <= 1e6
such that
(a1 + 1) is prime
(a2 + 1) is prime
having a table of prime numbers from 1 to 1e6 it's a milliseconds task
It is possible to solve this problem without doing any factoring. All you need is a sieve.
Instead of a traditional Sieve of Eratosthenes that consists of bits (representing either prime or composite) arrange your sieve so each element of the array is a pointer to an initially-null list of factors. Then visit each element of the array, as you would with the Sieve of Eratosthenes. If the element is a non-null list, it is composite, so skip it. Otherwise, for each element and for each of its powers less than the limit, add the element to each multiple of the power. At the end of this process you will have a list of prime factors of the number. That wasn't very clear, so let me give an example for the numbers up to 20. Here's the array, initially empty:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Now we sieve by 2, adding 2 to each of its multiples:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
2 2 2 2 2 2 2 2 2 2
Since we also sieve by powers, we add 2 to each multiple of 4:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2
And likewise, by each multiple of 8 and 16:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2
2 2
2
Now we're finished with 2, so we go to the next number, 3. The entry for 3 is null, so we sieve by 3 and its power 9:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2
2 2
2
3 3 3 3 3 3
3 3
Then we sieve by 5, 7, 11, 13, 17 and 19:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2
2 2
2
3 3 3 3 3 3
3 3
5 5 5 5
7 7
11
13
17
19
Now we have a list of all the prime factors of all the numbers less than the limit, computed by sieving rather than factoring. It's easy then to calculate the number of divisors by scanning the lists; count the number of occurrences of each factor in the list, add 1 to each total, and multiply the results. For instance, 12 has 2 factors of 2 and 1 factor of 3, so take (2+1) * (1+1) = 3 * 2 = 6, and indeed 12 has 6 factors: 1, 2, 3, 4, 6 and 12.
The final step is to check if the number of divisors has exactly two factors. That's easy: just look at the list of prime divisors and count them.
Thus, you have solved the problem without doing any factoring. That ought to be very fast, just a little bit slower than a traditional Sieve of Eratosthenes and very much faster than factoring each number to compute the number of divisors.
The only potential problem is space consumption for the lists of prime factors. But you shouldn't worry too much about that; the largest list will have only 19 factors (since the smallest factor is 2, and 2^20 is greater than your limit), and 78498 of the lists will have only a single factor (the primes less than a million).
Even though the above mentioned problem doesn't require calculating number of divisors, It still can be solved by calculating d(N) (divisors of N) within the time limit (0.07s).
The idea is to pretty simple. Keep track of smallest prime factor f(N) of every number. This can be done by standard prime sieve. Now, for every number i keep dividing it by f(i) and increment the count till i = 1. You now have set of prime counts for each number i.
int d[MAX], f[MAX];
void sieve() {
for (int i = 2; i < MAX; i++) {
if (!f[i]) {
f[i] = i;
for (int j = i * 2; j < MAX; j += i) {
if (!f[j]) f[j] = i;
}
}
d[i] = 1;
}
for (int i = 1; i < MAX; i++) {
int k = i;
while (k != 1) {
int s = 0, fk = f[k];
while (k % fk == 0) {
k /= fk; s++;
}
d[i] *= (s + 1);
}
}
}
Once, d(N) is figured out, rest of the problem becomes much simpler. Keeping a smallest prime factor of every number also helps to solve lots of other problems.
Related
My array is 1D m in length. say m = 16
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
The way I actually interpret the array is n x n = m
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
I require to read the array in this manner due to the way my physical environment is set up
0 4 8 12 13 9 5 1 2 6 10 14 15 11 7 3
What I came up with works but I really don't think it is the best way to do this:
bool isFlipped = true;
int x = 0; x < m; x++
if(isFlipped)
newLine[x] = line[((n-1)-x%n)*n + x/n)]
else
newLine[x] = line[x%n*n +x/n]
if(x != 0 && x % n == 0)
isFlipped = !isFlipped
This gives me the required result but I really think there is a way to get rid of this boolean by purely using a math formula. I am stuffing this into a 8kb microcontroller and I need to conserve as much space as I can because I will have some bluetooth communication and more math going into it later on.
Edit:
Thanks to a user I got to a one line solution-ish. (the below would replace the lines in the for-loop)
c=x/n
newLine[x] = line[((c+1)%2)*((x%n)*n+c) + (c%2)*((n-1)-2*(x%n))*n ];
You should be able to utilize the fact that odd columns in the n*n matrix are read from down up, and even columns are read from up down.
A number at index x in newLine is located in column number c=floor(x/n) in the n*n matrix. c%2 is 0 for even columns and 1 for odd columns. So something like this should work:
int c = x/n;
newLine[x] = line[(x%n)*n + (c%2)*((n-1)-2*(x%n))*n + c];
Converting 24-hour time (like military time) to 12-hr (clock-face) time seems like a perfect place to use the modulo operator, but I can't figure out a purely mathematical way to map 0 to 12 (so have hours 1 through 12 instead of 0 through 11). The best I've been able to come up with are either (in Ruby)
modHour = militaryHour % 12
if modHour == 0
clockHour = 12
else
clockHour = modHour
end
or,
hours = [12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
clockHour = hours[ militaryHour % 12 ]
It seems like there must be some way to accomplish this shift mathematically, but I can't figure it out.
I think
hour12 = 12 - ((- hour24) % 12)
should work.
(pardon my Python...)
>>> for hr in range (24):
... print hr, (hr + 11) % 12 + 1
...
0 12
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 1
14 2
15 3
16 4
17 5
18 6
19 7
20 8
21 9
22 10
23 11
The answer by Eric Jablow did not yield the correct answer for me. I found that this inline function worked though.
int militaryTime = 14;
int civilianTime = ((24hr - 1) % 12) + 1;
int maxValue = m[0][0];
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if ( m[i][j] >maxValue )
{
maxValue = m[i][j];
}
}
}
cout<<maxValue<<endl;
int sum = 0;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
sum = sum + m[i][j];
}
}
cout<< sum <<endl;
For the above code if we draw a flow graph like this basic independent paths would be following six
Path 1: 1 2 3 10 11 12 13 19
Path 2: 1 2 3 10 11 12 13 14 15 18 13 19
Path 3: 1 2 3 10 11 12 13 14 15 16 17 15 18 13 19
Path 4: 1 2 3 4 5 9 3 10 11 12 13 19
Path 5: 1 2 3 4 5 6 8 5 9 3 10 11 12 13 14 15 16 17 15 18 13 19
Path 6: 1 2 3 4 5 6 7 8 5 9 3 10 11 12 13 14 15 16 17 15 18 13 19
So the question here is according to the given code path 2, 3, 4 can not be tested (Note the "N" in loops). So is it okay not to have a actual execution path as given in the basic set?...
or according to macabe complexity metric do we have to change the code given above. Because a tutor of mine said we have to change the code also he said that there are unstructured loops so we have to change the code. (I don't see an unstructured loop as well)
But my feeling is, if we change the code actual output may differ to expected output. So please someone explain this
1) McCabe's complexity can be calculated as the number of decision points + 1. In your case there are 5 decision points (nodes 3, 5, 6, 13 and 15) meaning that the McCabe complexity of the code fragment is 5+1 = 6. 6 is by no means too high in terms of McCabe complexity: one could, of course, still argue that it is too high given the functionality the implementation has to provide.
2) McCabe's complexity is related to testability of a method/procedure but not to testability of a specific path. Paths can be feasible (= there exist values of the variables that force the execution through this path) or not, but McCabe's complexity is happily unaware of such complications. If you really want to look into feasibility of paths keep in mind that the problem in general is undecidable but many practical data flow analysis algorithms are available.
3) if we change the code actual output may differ to expected output Of course, you cannot introduce an arbitrary change and hope that the results will be the same. However, and, this is probably what your tutor intended, there is a way of restructuring your code such that the output produced remains the same, and the McCabe's complexity goes down. Think, e.g., on whether you really need to separate the tasks of calculating the maximum and the sum.
Assume a hashtable is represented as an array of size 7. We want to store strings consisting of three digits. The primary hash key is the numerical value of the second digit modulo 7. The secondary hash key is the numerical value of the third digit modulo 4 increased by one. Insert the following strings into the initially empty hashtable: "111", "222", "737", "323" and "234".
My response:
0 - 234
1 - 111
2 - 222
3 - 737
4 - 323
5 -
6 -
111; 1 mod 7 = 1
222; 2 mod 7 = 2
737; 3 mod 7 = 3
323; 3 mod 4 + 1 = 4
234; 4 mod 4 + 1 = 4 (0)
is that correct?
You might want to mention what type of hash you are using. I assume from your description that it is cuckoo hashing. If this is the case you are fine up until the last insertion. Before 234 is inserted you have:
0:
1: 111
2: 222
3: 737
4: 323
5:
6:
Trying to insert 234 with h1 gives a key of 3 mod 7 = 3, but 3 already contains 373. Moving on to h2 we get 4 mod 4 + 1 = 1 but 1 already contains 111. At this point there are no more hash functions, so we insert 234 at 1 and rehash 111.
0:
1: 234
2: 222
3: 737
4: 323
5:
6:
Hashing 111 with h1 gives 1 again, h2 gives 1 mod 4 + 1 = 2, but 2 already contains 222, so we store 111 at 2 and rehash 222, etc. In this case, eventually you will find all the keys fit. In the case where they entries don't all fit (i.e. the reinsertion enters an infinite cycle) the table needs to be resized and rehashed with new hash functions.
I'm not sure what this problem wants you to do if there is still a collision after the secondary hash key is checked, but I think it goes like this:
111: 1 mod 7 = 1
222: 2 mod 7 = 2
737: 3 mod 7 = 3
323: 2 mod 7 = 2 => Collision: 3 mod 4 + 1 = 3 + 1 = 4
234: 3 mod 7 = 3 => Collision: 4 mod 4 + 1 = 0 + 1 = 1 => Collision
If you advance by one after the second collision, the result would be
0 -
1 - 111
2 - 222
3 - 737
4 - 323
5 - 234
6 -
7 -
I'm trying to understand the reason for a rule when converting.
I'm sure there must be a simple explanation, but I can't seem to wrap my head around it.
Appreciate any help!
Converting from base10 to any other base is done like this:
number / desiredBase = number + remainder
You do this until number = 0.
But after all of the calculations, you have to take all the remainders upside down. I don't understand why.
For example: base10 number to base2
11 / 2 = 5 + 1
5 / 2 = 2 + 1
2 / 2 = 1 + 0
1 / 2 = 0 + 1
Why is the correct answer: 1011 and not 1101 ?
I know it's a little petty, but it would really help me remember better if I could understand this.
Think of the same in decimal system, even if it doesn't make that much sense to actually do the math in this case :)
1234 / 10 = 123 | 4
123 / 10 = 12 | 3
12 / 10 = 1 | 2
1 / 10 = 0 | 1
Every time you divide, you strip the least significant digit, so the first result, is the least significant result -- digit on the right.
Because 11 =
1 * 2 ^ 3 + 0 * 2 ^ 2 + 1 * 2 ^ 1 + 1 * 2 ^ 0 (1011)
and not
1 * 2 ^ 3 + 1 * 2 ^ 2 + 0 * 2 ^ 1 + 1 * 2 ^ 0 (1101)