I have 200,000 links that I am trying to download, I have tried downloading it all in one go but I ran into memory issues.
I am trying to create a function which will download 1000 links at a time and save them in a folder.
Packages:
library(dplyr)
library(purrr)
library(edgarWebR)
A small sample of the data is as follows:
Data 1:
urls_to_parse <- c("https://www.sec.gov/Archives/edgar/data/1750/000104746918004978/a2236183z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746917004528/a2232622z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746916014299/a2228768z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746915006136/a2225345z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746914006243/a2220733z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746913007797/a2216052z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746912007300/a2210166z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746911006302/a2204709z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746910006500/a2199382z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746909006783/a2193700z10-k.htm"
)
I then apply the following function to download these 10 links
parsed_files <- map(urls_to_parse, possibly(parse_filing, otherwise = NA))
Which stores it as a nice list, I can then apply names(parsed_files) <- urls_to_parse to name the lists as the links from where they were downloading them from. I can also use output <- plyr::ldply(parsed_files, data.frame) to store everything in a nice data frame.
Using the below data, how could I create batches to download the data in say batches of 10?
What I have currently:
start = 1
end = 100
output <- NULL
output_fin <- NULL
for(i in start:end){
output[[i]] <- map(urls_to_parse[[i]], possibly(parse_filing, otherwise = NA))
names(output) <- urls_to_parse[start:end]
save(output_fin, file = paste0("C:/Users/Downloads/data/",i, "output.RData"))
}
I am sure there is a better way using a function, since this code breaks for some of the results.
More data: - 100 links
urls_to_parse <- c("https://www.sec.gov/Archives/edgar/data/1750/000104746918004978/a2236183z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746917004528/a2232622z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746916014299/a2228768z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746915006136/a2225345z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746914006243/a2220733z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746913007797/a2216052z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746912007300/a2210166z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746911006302/a2204709z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746910006500/a2199382z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746909006783/a2193700z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746908008126/a2186742z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000110465907055173/a07-18543_110k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000110465906047248/a06-15961_110k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000110465905033688/a05-12324_110k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746904023905/a2140220z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746903028005/a2116671z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000091205702033450/a2087919z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000095012310108231/c61492e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000095015208010514/n48172e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000095013707018659/c22309e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000095013707000193/c11187e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000095013406000594/c01109e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000120677405000032/d16006.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000120677404000013/d13773.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000104746903001075/a2097401z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000091205702001614/a2067550z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/319126/000115752308008030/a5800571.htm",
"https://www.sec.gov/Archives/edgar/data/319126/000115752307009801/a5515869.htm",
"https://www.sec.gov/Archives/edgar/data/319126/000115752306009238/a5227919.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046908000102/alpharmainc_10k.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046907000017/alo10k2006.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046906000027/alo10k2005.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046905000021/alo10k2004final.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046904000058/alo10k2003master.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046903000001/alo10k.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046902000004/alo10k2001.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046901500003/alo.htm",
"https://www.sec.gov/Archives/edgar/data/4515/000000620118000009/a10k123117.htm",
"https://www.sec.gov/Archives/edgar/data/4515/000119312517051216/d286458d10k.htm",
"https://www.sec.gov/Archives/edgar/data/4515/000119312516474605/d78287d10k.htm",
"https://www.sec.gov/Archives/edgar/data/4515/000119312515061145/d829913d10k.htm",
"https://www.sec.gov/Archives/edgar/data/4515/000000620114000004/aagaa10k-20131231.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000000620113000023/amr-10kx20121231.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000119312512063516/d259681d10k.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000095012311014726/d78201e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000000620110000006/ar123109.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000000620109000009/ar120810k.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000000451508000014/ar022010k.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000095013407003888/d43815e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000095013406003715/d33303e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000095013405003726/d22731e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000095013404002668/d12953e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000104746903013301/a2108197z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/65695/000095013407003823/h42902e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/65695/000095012906002343/h31028e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/65695/000095012905002955/h22337e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000156459018005085/cece-10k_20171231.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000156459017004264/cece-10k_20161231.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000156459016015157/cece-10k_20151231.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312515095828/d864880d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312514098407/d661608d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312513109153/d444138d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312512119293/d293768d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312511067373/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312510069639/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312509055504/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312508058939/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312507071909/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312506068031/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312505077739/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312504052176/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/2601/000110465910047121/a10-16705_110k.htm",
"https://www.sec.gov/Archives/edgar/data/2601/000114420409046933/v159572_10k.htm",
"https://www.sec.gov/Archives/edgar/data/2601/000110465906060737/a06-19311_110k.htm",
"https://www.sec.gov/Archives/edgar/data/2601/000104746905022854/a2162888z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/2601/000104746904028585/a2143353z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/2601/000104746903031974/a2119476z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000143774918010388/avx20180331_10k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916317000028/avx-20170331x10k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916316000079/avx-20160331x10k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916315000024/avx-20150331x10k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916314000035/avx-20140331x10k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916313000022/avx-20130331x10k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916312000024/avxform10kfy12.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916311000013/avxform10kfy11.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916310000020/avxform10kfy10.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916309000117/form10kfy09.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916308000192/form10qq1fy09.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916308000101/form10kfy08.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916307000122/form10kfy07.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916306000102/avxfy06form10-k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916305000094/fy0510k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916304000091/fy0410k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916303000020/fy0310k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916302000007/r10k-0302.htm",
"https://www.sec.gov/Archives/edgar/data/7286/000076462218000018/pnw2017123110-k.htm",
"https://www.sec.gov/Archives/edgar/data/7286/000076462217000010/pnw2016123110-k.htm",
"https://www.sec.gov/Archives/edgar/data/7286/000076462216000087/pnw2015123110-k.htm",
"https://www.sec.gov/Archives/edgar/data/7286/000076462215000013/pnw12311410-k.htm",
"https://www.sec.gov/Archives/edgar/data/7286/000110465914012068/a13-25897_110k.htm"
)
Looping over to do batch job as you showed is a bad idea. If you have a 1000s of files to be downloaded, how do you recover from errors?
The performance is not solely depend on your computer's configuration, but the network performance is crucial.
Here are couple of suggestions.
Option 1
partition all URLs in to batches to be able to download them parallelly. The number of files to be downloaded could be equal to number of cores in your computer. Look at this question; reading multiple files quickly in R
store these batches in a queue objects - For ex: using a package like https://cran.r-project.org/web/packages/dequer/dequer.pdf
pop the queue and use the batch of URLs in your parallel file download function.
Use a retryable file download function like in -- HTTP error 400 in R, error handling, How to retry instead of forcing to stop?
Once the queue is completed, move to the next partition.
wrap the whole operation in a retryable loop. For example; How to retry a statement on error?
Why do I use a queue? Because you could retry on error easily.
A pseudo code
file_url_partitions <- partion_as_batches(all_urls, batch_size)
attempts = 3
while( file_url_partitions is not empty && attempt <= 3 ) {
batch = file_url_partitions.pop()
tryCatch({
download_parallel(batch)
}, some_exception = function(se) {
file_url_partitions.push(batch)
attemp = attempt+1
})
}
Note: I don't have access to R studio/environment now hence no way to try.
Option 2
Download files separately using a download manager/similar and use downloaded files.
Some useful resources:
https://www.r-bloggers.com/r-with-parallel-computing-from-user-perspectives/
http://adv-r.had.co.nz/beyond-exception-handling.html
I'm using R to make an API call to a weather data provider to download some weather forecasts. I'm using a free key that allows me to make no more than 10 calls per minute. I've tried using Sys.sleep() to ensure I don't go over the threshold but the API resource monitor tells me that I've exceeded the number of calls.
For example, if I'm making 6 calls, a time interval of 10 seconds between the calls ought to be sufficient (not taking into account the time R would need).
dat <- list()
for(i in 1:6){
dat[[i]] <- getWeatherData(web_url, api_key, history_date, data_format)
Sys.sleep(10)
web_url <- gsub(i-1, i, url)
}
The getWeatherData function does the following:
makes the API call (only one API call is made each time the function is invoked. Uses httr::GET() to get the data),
parses the XML output to get desired variables (regulat expressions),
performs some clean-up (for missing/garbage values),
converts strings to R date-time objects (POSIXct), and
rounds values to the nearest hour (lubridate::round_date()).
Function inputs:
web_url is a custom url,
api_key is my personal key,
history_date is a string (formatted as "%d/%m/%Y %H:%M:%S"), and
data_format specifies if I want an .XML or .json file as output.
I can not share the url/key for obvious reasons. As soon as I run this, I get a notification from the data provider that I've exceeded the allowable calls per minute (10). I don't get a notification every time - not sure why that is either.
Any help is appreciated!
This solution should be helpful for you if Sys.sleep doesn't do the trick.
Basically, this replaces the use of Sys.sleep with while logic.
dat <- list()
delay_seconds<-10
for(i in 1:6){
dat[[i]] <- getWeatherData(web_url, api_key, history_date, data_format)
date_time<-Sys.time()
while((as.numeric(Sys.time()) - as.numeric(date_time))<delay_seconds){}
web_url <- gsub(i-1, i, url)
}
Here, we are:
defining a number of seconds to wait ( delay_seconds<-10 )
defining a start time for comparison ( date_time<-Sys.time() )
using a while loop that checks the present time in comparison to our comparison time and seeing if this is less than our chosen delay interval ( (as.numeric(Sys.time()) - as.numeric(date_time)<delay_seconds )
doing nothing until the wait time is over( {} )
Not knowing if you need/want to, but in the case that you're hoping to get your data out of the lists and into a longer combined form, I recommend the dplyr function bind_rows().
dat2<-bind_rows(dat)
Thanks to an answer by rbtj to this question: How to make execution pause, sleep, wait for X seconds in R?
I need to web-scrape through a number of pages. Given that there are many pages, I first write down the html files in my external HD and then process them.
The problem is that when I try to get the URL I always download the same page, because the website waits half a second to display the new page.
The code is as follows
library(RCurl)
library(stringr)
library(XML)
for(i in 1:numberPages){
# Generate the unique URL for each page
url <- str_c('https://www..../#{"page":"', i, '"}')
# Download the page
bill.result <- try(getURL(url))
while(class(bill.result)=="try-error"){ # if class()==error, retry to get the url after 1 sec
cat("Page irresponsive - trying again")
Sys.sleep(1)
bill.result <- try(getURL(url))
}
# Write the page to local hard drive
result <- try(write(bill.result, str_c(new_folder, "/page", i, ".html")))
while(class(result)=="try-error"){ # if class()==error, retry to write after 2 min
cat("I will sleep if network is down")
Sys.sleep(120)
result <- try(write(bill.result, str_c(new_folder, "/page", i, ".html")))
}
# Print progress of download
cat(i, "\n")
}
I have searched and havenĀ“t found an option that would wait, say, 1 second before getting the URL. Without this wait time, I always download the same page, no matter where in the loop I am. I know this because when I change the url address in my browser the page is the same for 1 second, and then it changes to the page I wanted in the first place.
I have an R data frame with a list of 500ish URLs. It looks a bit like this:
websites <- data.frame(rbind("www.nytimes.com", "www.google.com", "www.facebook.com"))
I want to go through these URLs and open them (maybe 10 at a time) in Google Chrome.
How would I go about this automatically with R?
I used this to get all 3 of them to open.
websites <- data.frame(rbind("www.nytimes.com", "www.google.com", "www.facebook.com"))
websites <- as.data.frame(t(websites))
websites[] <- lapply(websites, as.character)
webVec <- unname(unlist(websites[1,]))
for(i in 1:length(webVec)){
shell.exec(paste(webVec[i]))
}
This opens all of them however, and I'm not sure how to open only a certain amount at a time. I took a stab at it though:
setTen <- 1
for(i in (1 * (10 * (setTen - 1))):(10 * setTen )){
shell.exec(paste(webVec[i]))
}
the setTen variable asks if you want the first ten websites, second ten, ect.
I couldn't test it though since there is only 3 sites in this data frame.
If it doesn't work let me know and I'll try to figure out a different method.
I am trying to scrape data from a website which is unfortunately located on a very unreliable sever which has very volatile reaction times. The first idea is of course to loop over the list of (thousands of) URLs and saving the downloaded results by populating a list.
The problem however is that the server randomly responds very slowly which results into a timeout error. This alone would not be a problem as I can use the tryCatch() function and jump to the next iteration. Doing so I am however missing some files in each run. I know that each of the URLs in the list exists and I need all of the data.
My idea thus would have been to use tryCatch() to evaluate if the getURL() request yields and error. If so the loop jumps to the next iteration and the erroneous URL is appended at the end of the URL list over which the loop runs. My intuitive solution would look something like this:
dwl = list()
for (i in seq_along(urs)) {
temp = tryCatch(getURL(url=urs[[i]]),error=function(e){e})
if(inherits(temp,"OPERATION_TIMEDOUT")){ #check for timeout error
urs[[length(urs)+1]] = urs[[i]] #if there is one the erroneous url is appended at the end of the sequence
next} else {
dwl[[i]] = temp #if there is no error the data is saved in the list
}
}
If it "would" work I would eventually be able to download all the URLs in the list. It however doesn't work, because as the help page for the next function states: "seq in a for loop is evaluated at the start of the loop; changing it subsequently does not affect the loop". Is there a workaround for this or a trick with which I could achieve my envisaged goal? I am grateful for every comment!
I would do something like this(explanation within comments):
## RES is a global list that contain the final result
## Always try to pre-allocate your results
RES <- vector("list",length(urs))
## Safe getURL returns NA if error, the NA is useful to filter results
get_url <- function(x) tryCatch(getURL(x),error=function(e)NA)
## the parser!
parse_doc <- function(x){## some code to parse the doc})
## loop while we still have some not scraped urls
while(length(urs)>0){
## get the doc for all urls
l_doc <- lapply(urs,get_url)
## parse each document and put the result in RES
RES[!is.na(l_doc )] <<- lapply(l_doc [!is.na(l_doc)],parse_doc)
## update urs
urs <<- urs[is.na(l_doc)]
}