Related
I was following this post, but I do not get how can I manage it with my data.
My plot looks like:
And I would like that the "strings" were the same color as the 2nd column, i.e. for ESR1 I would like the orange string, and for PIK3CA green.
Any idea about how can I manage with scale_fill_manual or any other argument?
Thanks!
My code:
colorfill <- c("white", "white", "darkgreen", "orange", "white", "white", "white", "white", "white", "white", "white", "white", "white", "white", "white", "white", "white")
ggplot(data = Allu,
aes(axis1 = Gene_mut, axis2 = Metastasis_Location, y = Freq)) +
geom_alluvium(aes(fill = Gene_mut),
curve_type = "quintic") +
geom_stratum(width = 1/4, fill = colorfill) +
geom_text(stat = "stratum", size = 3,
aes(label = after_stat(stratum))) +
scale_x_discrete(limits = c("Metastasis_Location", "Gene_mut"),
expand = c(0.05, .05)) +
theme_void()
My data:
structure(list(Metastasis_Location = structure(c(1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 9L, 9L, 9L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L,
11L, 11L), .Label = c("adrenal", "bone", "breast", "liver", "lung",
"muscle", "node", "pancreatic", "peritoneum", "pleural", "skin"
), class = "factor"), T0_T2_THERAPY_COD = structure(c(2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
"F"), class = "factor"), T0_T2_PD_event = structure(c(2L, 2L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L), .Label = c("No Progression",
"Progression"), class = "factor"), Gene_mut = structure(c(4L,
5L, 1L, 3L, 4L, 1L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 5L, 5L, 5L, 6L, 3L, 6L, 6L, 6L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L,
5L, 6L, 2L, 3L, 4L, 4L, 3L, 3L, 3L, 4L, 5L, 6L, 3L, 6L, 3L, 3L,
3L, 3L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 3L, 4L, 4L, 5L, 6L,
1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L,
5L, 5L, 5L, 3L, 4L, 3L, 4L, 5L, 6L, 3L, 3L, 4L, 5L, 6L, 6L, 6L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 3L, 4L, 3L, 4L, 5L,
6L, 3L, 4L, 5L, 6L, 3L, 4L, 5L, 6L, 1L, 6L, 3L, 3L, 4L, 4L, 5L
), .Label = c("AKT1", "ERBB2", "ESR1", "PIK3CA", "TP53", "WT"
), class = "factor"), LABO_ID = structure(c(45L, 8L, 13L, 11L,
11L, 26L, 7L, 15L, 23L, 26L, 35L, 39L, 7L, 19L, 26L, 32L, 33L,
35L, 39L, 15L, 19L, 35L, 1L, 37L, 34L, 43L, 47L, 3L, 10L, 18L,
20L, 28L, 31L, 36L, 42L, 9L, 10L, 14L, 18L, 20L, 28L, 31L, 36L,
44L, 45L, 8L, 10L, 18L, 28L, 42L, 2L, 7L, 39L, 7L, 39L, 3L, 4L,
42L, 5L, 42L, 6L, 21L, 1L, 10L, 22L, 28L, 46L, 9L, 10L, 14L,
28L, 46L, 10L, 28L, 48L, 25L, 23L, 32L, 33L, 40L, 43L, 24L, 3L,
18L, 24L, 28L, 31L, 36L, 42L, 18L, 27L, 28L, 31L, 36L, 45L, 18L,
24L, 27L, 28L, 42L, 16L, 16L, 18L, 18L, 18L, 29L, 23L, 39L, 39L,
40L, 1L, 12L, 47L, 3L, 18L, 20L, 28L, 31L, 36L, 38L, 42L, 5L,
18L, 20L, 27L, 28L, 31L, 36L, 38L, 41L, 45L, 8L, 18L, 27L, 28L,
42L, 48L, 6L, 17L, 30L, 31L, 31L, 18L, 18L, 18L, 29L, 39L, 39L,
40L, 43L, 31L, 31L, 48L, 30L, 13L, 34L, 18L, 36L, 18L, 36L, 18L
), .Label = c("ER-11", "ER-19", "ER-21", "ER-22", "ER-29", "ER-30",
"ER-31", "ER-32", "ER-33", "ER-38", "ER-40", "ER-43", "ER-49",
"ER-8", "ER-AZ-04", "ER-AZ-05", "ER-AZ-06", "ER-AZ-07", "ER-AZ-08",
"ER-AZ-10", "ER-AZ-11", "ER-AZ-11=ER-47", "ER-AZ-13", "ER-AZ-14",
"ER-AZ-15", "ER-AZ-16", "ER-AZ-17", "ER-AZ-18", "ER-AZ-20", "ER-AZ-20=ER-27",
"ER-AZ-21", "ER-AZ-23", "ER-AZ-23=ER-52", "ER-AZ-24", "ER-AZ-29",
"ER-AZ-31", "ER-AZ-33", "ER-AZ-35", "ER-AZ-37", "ER-AZ-38", "ER-AZ-39",
"ER-AZ-40", "ER-AZ-43", "ER-AZ-44", "ER-AZ-45", "ER-AZ-49", "ER-AZ-51",
"ER-AZ-53"), class = "factor"), Freq = c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L)), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"), row.names = c(NA, -161L), groups = structure(list(
Metastasis_Location = structure(c(1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 8L, 8L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L), .Label = c("adrenal",
"bone", "breast", "liver", "lung", "muscle", "node", "pancreatic",
"peritoneum", "pleural", "skin"), class = "factor"), T0_T2_THERAPY_COD = structure(c(2L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L), .Label = c("A",
"F"), class = "factor"), T0_T2_PD_event = structure(c(2L,
2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L), .Label = c("No Progression",
"Progression"), class = "factor"), Gene_mut = structure(c(4L,
5L, 1L, 3L, 4L, 1L, 2L, 3L, 4L, 5L, 6L, 3L, 6L, 3L, 4L, 5L,
6L, 2L, 3L, 4L, 3L, 4L, 5L, 6L, 3L, 6L, 3L, 4L, 5L, 6L, 3L,
4L, 5L, 6L, 1L, 3L, 4L, 5L, 3L, 4L, 3L, 4L, 5L, 6L, 3L, 4L,
5L, 6L, 6L, 3L, 4L, 5L, 6L, 3L, 4L, 3L, 4L, 5L, 6L, 3L, 4L,
5L, 6L, 3L, 4L, 5L, 6L, 1L, 6L, 3L, 4L, 5L), .Label = c("AKT1",
"ERBB2", "ESR1", "PIK3CA", "TP53", "WT"), class = "factor"),
.rows = structure(list(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8:12,
13:19, 20:22, 23L, 24L, 25:27, 28:35, 36:45, 46:50, 51L,
52L, 53L, 54:55, 56:58, 59L, 60L, 61L, 62L, 63L, 64:67,
68:72, 73:75, 76L, 77L, 78:79, 80L, 81L, 82L, 83:89,
90:95, 96:100, 101L, 102L, 103L, 104L, 105L, 106L, 107:108,
109L, 110L, 111:112, 113L, 114:121, 122:131, 132:137,
138:140, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L,
149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L, 157:158,
159:160, 161L), ptype = integer(0), class = c("vctrs_list_of",
"vctrs_vctr", "list"))), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -72L), .drop = TRUE))
You're right to think of scale_fill_manual(). I think this is the more programmable alternative to passing a vector like colorfill to an aesthetic outside aes(). The following plot uses your data and color vector to control how the fill aesthetic is coded throughout the plot, and notice that fill is passed the same variable, Gene_mut, in both layers (alluvium and stratum):
ggplot(data = Allu,
aes(axis1 = Gene_mut, axis2 = Metastasis_Location, y = Freq)) +
geom_alluvium(aes(fill = Gene_mut),
curve_type = "quintic") +
geom_stratum(aes(fill = Gene_mut), width = 1/4) +
scale_fill_manual(values = colorfill) +
geom_text(stat = "stratum", size = 3,
aes(label = after_stat(stratum))) +
scale_x_discrete(limits = c("Metastasis_Location", "Gene_mut"),
expand = c(0.05, .05)) +
theme_void()
Since Metastasis_Location takes different values than Gene_mut, fill treats those strata as having missing values, which by default are colored grey. You can change that behavior by passing a color string to the na.value parameter of scale_fill_manual().
I have a time series data at hourly level. I am trying to build a forecast for that data. The following is sample of data:
sample <-
structure(list(group_type = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("Group 1",
"Group 2", "Group 5"), class = "factor"), sub_group_type = structure(c(1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), .Label = c("Sub Group 1", "Sub Group 2", "Sub Group 3"),
class = "factor"), date = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("1/1/17",
"1/2/17", "1/3/17"), class = "factor"), hour = c(6L, 7L, 8L, 9L, 10L, 11L, 12L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 6L, 7L, 8L, 9L, 10L, 11L, 12L), weekday = structure(c(2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L),
.Label = c("Monday", "Sunday", "Tuesday"), class = "factor"), total = c(9L, 9L,
10L, 6L, 2L, 14L, 3L, 11L, 12L, 12L, 0L, 10L, 8L, 13L, 14L, 17L, 12L, 5L, 9L, 7L,
10L, 13L, 23L, 11L, 3L, 6L, 10L, 11L, 14L, 16L, 13L, 2L, 3L, 4L, 14L, 11L, 16L,
8L, 12L, 7L, 6L, 13L, 13L, 22L, 12L, 7L, 9L, 8L, 14L, 9L, 16L, 15L, 6L, 7L, 6L,
12L, 13L, 14L, 7L, 3L, 13L, 11L, 6L, 8L, 15L, 11L, 3L, 10L, 9L, 7L, 12L, 10L, 10L,
3L, 14L, 8L, 12L, 10L, 20L, 5L, 4L, 8L, 12L, 3L, 0L, 4L, 5L, 1L, 6L, 7L, 0L, 3L,
1L, 1L, 0L, 2L, 2L, 0L, 2L, 0L, 3L, 7L, 6L, 2L, 1L)), .Names = c("group_type",
"sub_group_type", "date", "hour", "weekday", "total"), class = "data.frame",
row.names = c(NA, -105L))
I am applying the following functions to the above data:
models <- function(x){
x <- msts(x, seasonal.periods=c(24,168))
mod_exp <- ets(x, ic='aicc', restrict=T)
mod_hwa <- HoltWinters(x,seasonal = "additive")
mod_hwm <- HoltWinters(x,seasonal = "multiplicative")
mod_neural <- nnetar(x, p=7, size=25)
mod_tbats <- tbats(x, ic='aicc', seasonal.periods=7)
mod_bats <- bats(x, ic='aicc', seasonal.periods=7)
mod_stl <- stlm(x, s.window=7, ic='aicc', robust=TRUE, method='ets')
mod_sts <- StructTS(x)
}
test <- by(sample,list(sample$group_type,sample$sub_group_type,sample$date, sample$hour
),models)
However, I am getting the following error:
Error in ets(x, ic = "aicc", restrict = T) : y should be a univariate time series
If I split the data as follows as apply ets() function, I am able to run it without any issues. But, this splitting of data is not a very feasible option for me as the number of Groups and Sub Groups are too many and each of them has a different time series pattern:
sub_sample_1 <- sample[sample$group_type == "Group 1" & sample$sub_group_type == "Sub Group 1",6]
x <- msts(sub_sample_1, seasonal.periods=24)
mod_arima <- auto.arima(x, ic='aicc', stepwise=F)
mod_exp <- ets(x, ic='aicc', restrict=T)
mod_hwa <- HoltWinters(x,seasonal = "additive")
mod_hwm <- HoltWinters(x,seasonal = "multiplicative")
mod_neural <- nnetar(x, p=24, size=10)
mod_tbats <- tbats(x, ic='aicc', seasonal.periods=24)
mod_bats <- bats(x, ic='aicc', seasonal.periods=24)
mod_stl <- stlm(x, s.window=24, ic='aicc', robust=TRUE, method='ets')
mod_sts <- StructTS(x)
Is there any work around so that I can apply the models by group of columns with out encountering any errors?
Also, not all models are working for all the groups. For the sub_sample_1 data, HoltWinters, neuralnet, bats and stl are giving me error and others are working
> mod_hwa <- HoltWinters(x,seasonal = "additive")
Error in decompose(ts(x[1L:wind], start = start(x), frequency = f), seasonal) :
time series has no or less than 2 periods
> mod_hwm <- HoltWinters(x,seasonal = "multiplicative")
Error in HoltWinters(x, seasonal = "multiplicative") :
data must be non-zero for multiplicative Holt-Winters
> mod_bats <- bats(x, ic='aicc', seasonal.periods=24)
Error in optim(par = param.vector$vect, fn = calcLikelihoodNOTransformed, :
function cannot be evaluated at initial parameters
I can understand why these models are not working for my data. How do I exclude them when they give errors when I apply the function?
Thanks in advance for the help!
This question is similar (extension maybe) to my other question here
Several issues arise from your current setup:
Functions return the last line if no return() is specified. So your first attempt will lose all lines except for mod_sts which will be the value test is assigned for each subset of by.
In your subset code, you are actually passing the 6th column (an atomic vector) whereas you pass all columns of dataframe in your first code attempt. This may be the reason for your error where input should be per the msts docs:
A numeric vector, ts object, matrix or data frame. It is intended that
the time series data is univariate, otherwise treated the same as
ts().
Your by is receiving four groupings, group_type, sub_group_type, date, and hour unlike your second subset code of two. Unless your data is very large, these many groupings may result with few rows or no rows, and hence not enough data points for model procedures as your last code block seems to suggest.
With that said, consider the following adjustment in returning a list of named elements by first two groupings, specifying the 6th column. And because by takes a combinations of factors which in subsetting dataframe may yield no rows, below uses tryCatch to capture any errors and return empty lists to be filtered out in final line.
models <- function(x){
x <- msts(x, seasonal.periods=c(24,168))
list(
mod_exp = ets(x, ic='aicc', restrict=T),
mod_hwa = HoltWinters(x,seasonal = "additive"),
mod_hwm = HoltWinters(x,seasonal = "multiplicative"),
mod_neural = nnetar(x, p=7, size=25),
mod_tbats = tbats(x, ic='aicc', seasonal.periods=7),
mod_bats = bats(x, ic='aicc', seasonal.periods=7),
mod_stl = stlm(x, s.window=7, ic='aicc', robust=TRUE, method='ets'),
mod_sts = StructTS(x)
)
}
# TRY/CATCH TO CAPTURE ERRORS AND RETURN EMPTY LIST
test <- by(sample[,6], list(sample$group_type, sample$sub_group_type),
function(x) tryCatch({ models(x)
}, error=function(e) return(list(NA))))
# TO REMOVE NULLs AND NAs (EMPTY ITEMS)
test <- Filter(function(i) length(i) > 0, test)
I have the following
t <- structure(list(name = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("Alice", "Bob",
"Jane Doe", "John Doe"), class = "factor"), school = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("Alice School",
"Bob School", "Someother School", "Someschool College"), class = "factor"),
group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("A", "B"), class = "factor"),
question = structure(c(2L, 4L, 6L, 8L, 1L, 3L, 5L, 7L, 2L,
4L, 6L, 8L, 1L, 3L, 5L, 7L, 2L, 4L, 6L, 8L, 1L, 3L, 5L, 7L,
2L, 4L, 6L, 8L, 1L, 3L, 5L, 7L), .Label = c("q1", "q2", "q3",
"q4", "q5", "q6", "q7", "q8"), class = "factor"), mark = c(0L,
0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L,
1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L,
1L), subject = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L), .Label = c("C", "M"), class = "factor")), .Names = c("name",
"school", "group", "question", "mark", "subject"), row.names = c(7L,
15L, 23L, 31L, 3L, 11L, 19L, 27L, 8L, 16L, 24L, 32L, 4L, 12L,
20L, 28L, 6L, 14L, 22L, 30L, 2L, 10L, 18L, 26L, 5L, 13L, 21L,
29L, 1L, 9L, 17L, 25L), class = "data.frame")
and I need to produce a data frame in which each student has one combined mark for each subject. The combination is simply a sum of the marks on each question. So, for example, Jane Doe will have 3 on subject C and 2 on subject M. I've been banging my head for long enough with Reduce and other approaches. I could possibly solve this in a very procedural way, but if I could do that with a one-liner (or close approximation), I'd be happier. I'm sure it can be done...
You said it in your question; you want to group_by student and subject and compute the sum
library(tidyverse)
asdf %>%
group_by(name, subject) %>%
summarise(score = sum(mark))
Here a data.table solution:
library(data.table)
setDT(t)[, sum(mark), by = list(name, subject)]
And just for completeness, base R:
aggregate(mark ~ name + subject, data=t, sum)
This says "aggregate the response variable mark by the grouping variables name and subject, using sum as the aggregation function".
I have a data frame with x and y positions and two factor columns blocknr and cat:
dput(testData)
structure(list(xpos = c(2L, 8L, 5L, 8L, 1L, 4L, 5L, 1L, 8L, 4L,
3L, 2L, 6L, 5L, 1L, 7L, 3L, 4L, 3L, 7L, 1L, 6L, 7L, 7L, 2L, 5L,
3L, 4L, 6L, 7L, 1L, 5L, 1L, 6L, 4L, 5L, 3L, 6L, 4L, 8L, 1L, 3L,
4L, 6L, 7L, 3L, 2L, 6L, 4L, 2L, 1L, 7L, 4L, 8L, 2L, 3L, 2L, 5L,
8L, 2L, 8L, 3L, 3L, 5L, 6L, 7L, 1L, 5L, 6L, 4L, 2L, 6L, 7L, 1L,
5L, 7L, 2L), ypos = c(1L, 2L, 8L, 1L, 6L, 7L, 1L, 4L, 6L, 1L,
2L, 3L, 4L, 5L, 7L, 8L, 10L, 2L, 6L, 9L, 1L, 2L, 10L, 4L, 5L,
6L, 3L, 5L, 9L, 3L, 9L, 10L, 3L, 7L, 8L, 2L, 5L, 6L, 3L, 4L,
10L, 1L, 4L, 10L, 2L, 8L, 9L, 3L, 6L, 8L, 5L, 7L, 10L, 3L, 4L,
7L, 2L, 4L, 5L, 6L, 7L, 9L, 4L, 7L, 8L, 1L, 2L, 9L, 5L, 9L, 10L,
1L, 6L, 8L, 3L, 5L, 7L), blocknr = c(1L, 3L, 2L, 3L, 1L, 2L,
2L, 1L, 3L, 2L, 1L, 1L, 3L, 2L, 1L, 3L, 2L, 2L, 1L, 3L, 1L, 2L,
3L, 3L, 1L, 2L, 1L, 2L, 3L, 3L, 1L, 2L, 1L, 3L, 2L, 2L, 1L, 3L,
2L, 3L, 1L, 1L, 2L, 3L, 3L, 2L, 1L, 3L, 2L, 1L, 1L, 3L, 2L, 3L,
1L, 2L, 1L, 2L, 3L, 1L, 3L, 2L, 1L, 2L, 3L, 3L, 1L, 2L, 3L, 2L,
1L, 2L, 3L, 1L, 2L, 3L, 1L), cat = structure(c(2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L), .Label = c("A", "B", "C"
), class = "factor")), .Names = c("xpos", "ypos", "blocknr",
"cat"), row.names = c(NA, -77L), class = "data.frame")
I've made the following ggplot code to make 2D overview:
ggplot(data=testData, aes(x=xpos,y=ypos))+
geom_tile(aes(fill=cat), colour = "white")+
scale_fill_manual(values = c('A' = '#F8766D','C' = '#8ABF54','B' = '#C1DDA5'))+
geom_text(aes(x=xpos,y=ypos,label=blocknr),size=3)+
coord_cartesian(ylim = c(0.5, ymax + 0.5)) +
coord_cartesian(xlim = c(0.5, xmax + 0.5)) +
scale_x_continuous(breaks=seq(1,xmax,1))+
scale_y_continuous(breaks=seq(1,ymax,1))+
#geom_polygon(aes(group=blocknr))+
theme(axis.line = element_line(colour = "white"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank())
which produces the following result:
Now I would like to highlight each group of blocknrs by drawing a border around them as shown below:
I've played around with geom_polygon, geom_path, but I can't quite find a way to do this. Is there a general way to achieve this in ggplot without constructing an algorithm to compute where each line should be and add those lines as a geom_segment?
As far as I know, there is no way to do this with standard ggplot2 tile options. But it's not to much trouble to constuct them if you do it as segments. For example
ymax <- max(testData$ypos)
xmax <- max(testData$xpos)
m <- matrix(0, nrow=ymax, ncol=xmax)
m[as.matrix(testData[,2:1])] <- testData[,3]
Here we are basically taking all the row/col assignment data and creating a matrix that essentially looks like the plot but we will with the block numbers. Now, we will scan for the locations we need to add "wall" by looking for changes in the block numbers as we go across each row and column separately.
has.breaks<-function(x) ncol(x)==2 & nrow(x)>0
hw<-do.call(rbind.data.frame, Filter(has.breaks, Map(function(i,x)
cbind(y=i,x=which(diff(c(0,x,0))!=0)), 1:nrow(m), split(m, 1:nrow(m)))))
vw<-do.call(rbind.data.frame, Filter(has.breaks, Map(function(i,x)
cbind(x=i,y=which(diff(c(0,x,0))!=0)), 1:ncol(m), as.data.frame(m))))
And you can add calls to geom_segments to add the horizontal and vertical walls to the plot.
ggplot(data=testData, aes(x=xpos,y=ypos))+
geom_tile(aes(fill=cat), colour = "white")+
scale_fill_manual(values = c('A' = '#F8766D','C' = '#8ABF54','B' = '#C1DDA5'))+
geom_text(aes(x=xpos,y=ypos,label=blocknr),size=3)+
geom_segment(data=hw, aes(x=x-.5, xend=x-.5, y=y-.5, yend=y+.5))+
geom_segment(data=vw, aes(x=x-.5, xend=x+.5, y=y-.5, yend=y-.5))+
coord_cartesian(ylim = c(0.4, ymax + 0.6)) +
coord_cartesian(xlim = c(0.4, xmax + 0.6)) +
scale_x_continuous(breaks=seq(1,xmax,1))+
scale_y_continuous(breaks=seq(1,ymax,1))+
theme(axis.line = element_line(colour = "white"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank())
which gives
The desplot package will do this for you (using lattice):
library(desplot)
desplot(cat ~ xpos*ypos, testData, out1=blocknr, text=blocknr, main="testData")
I have the following data:
structure(list(Time = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L), Type = c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L), Value = c(848565.34,
1463110.61, 626673.64, 277708.41, 841422.11, 956238.14, 461092.16,
208703.75, 800837.48, 1356164.25, 549509.34, 300241.53, 851247.9714,
1353358.318, 598536.5948, 307485.0918, 332042.2275, 666157.8721,
194981.1566, 79344.50328, 831003.6952, 1111311.517, 521632.3074,
274384.1731, 1174671.569, 1070301.745, 454876.1589, 351973.2418,
5631710.101, 279394.6061, 119034.4969, 39693.31587, 1166869.32,
1156855.09, 369816.8152, 274092.5751, 924474.1129, 975028.0207,
449213.7419, 213855.3067, 1967188.317, 178841.604, 43692.69319,
12493.90538, 835142.6168, 876273.4462, 354154.644, 182794.3813,
1158096.251, 998647.6908, 566726.9865, 195099.4295, 1798902.332,
171519.4741, 81644.02724, 12221.41779, 1301775.314, 920464.9992,
294140.4882, 175626.9677, 2179780.499, 1838687.535, 978775.2674,
366668.3462, 5385970.324, 177527.1577, 65310.32674, 5986.871716,
2250834.171, 1547858.632, 666444.2992, 251767.3006, 1786086.335,
1597055.451, 563976.9719, 309186.1626, 487105.824, 279712.1658,
86471.46603, 24434.05486, 1563940.414, 1409428.038, 531425.682,
257056.5524, 1685501.271, 1371943.438, 881348.5022, 313355.8284,
170771.9118, 155596.7479, 59881.60825, 12090.57989, 1668571.543,
1150257.058, 563054.758, 306767.0344, 2214849.859, 1724719.891,
822092.2031, 443194.4609, 8897796.235, 87491.42925, 10699.30103,
18131.89738, 2137240.993, 1476873.778, 741685.9913, 549539.9735,
1362085.657, 1266106.09, 448653.8889, 278236.8416, 1671665.39,
95239.07396, 54173.57043, 10125.82011, 1335200.152, 1167824.903,
426738.1845, 261255.2092)), .Names = c("Time", "Type", "Value"
), row.names = c(NA, -120L), class = "data.frame")
I am trying to plot a stacked bar graph that looks like this:
I know that adding position="identity" or position="dodge" produces different types of bar plots but am not sure how to produce the above chart with both types. Any suggestions?
ggplot(df, aes(x = factor(Time), y = Value, fill = factor(Type))) +
geom_bar(stat="identity", position = "stack")
ggplot(df, aes(x = factor(Time), y = Value, fill = factor(Type))) +
geom_bar(stat="identity", position = "dodge")
You can do one or the other but not both. When they are dodged, the different values of type are being used. By adding a color outline, you can see that.
ggplot(df, aes(x = factor(Time), y = Value, fill = factor(Type))) +
geom_bar(stat="identity", position = c("dodge"), colour = 'black')