Elm: understanding foldp and mouse-clicks - functional-programming

I'm currently learning Elm. relatively new to functional programming. i'm trying to understand this example from http://elm-lang.org/learn/Using-Signals.elm on counting mouse-clicks. they provide the following code:
clickCount =
foldp (\click count -> count + 1) 0 Mouse.clicks
They explain that foldp takes three arguments: a counter-incrementer, which we defined as an anonymous function with two inputs, a starting state 0, and the Mouse.clicks signal.
I do not understanding why we need the variable click in our anonymous function. Why can't we just have \count -> count + 1? Is the extra input getting bound to one of our inputs into foldp?
thanks!

You need it because foldp expects a function with two inputs. In this case, the first input is just ignored by your lambda, but the foldp implementation still puts something in there. Mouse.clicks always puts a sort of do-nothing value called Unit in there.
Some signals have a value associated with them, like Mouse.position, for example. If you wanted to do something like measure how far the mouse has moved, you would need to use that parameter.

Related

Parameters of function in Julia

Does anyone know the reasons why Julia chose a design of functions where the parameters given as inputs cannot be modified?  This requires, if we want to use it anyway, to go through a very artificial process, by representing these data in the form of a ridiculous single element table.
Ada, which had the same kind of limitation, abandoned it in its 2012 redesign to the great satisfaction of its users. A small keyword (like out in Ada) could very well indicate that the possibility of keeping the modifications of a parameter at the output is required.
From my experience in Julia it is useful to understand the difference between a value and a binding.
Values
Each value in Julia has a concrete type and location in memory. Value can be mutable or immutable. In particular when you define your own composite type you can decide if objects of this type should be mutable (mutable struct) or immutable (struct).
Of course Julia has in-built types and some of them are mutable (e.g. arrays) and other are immutable (e.g. numbers, strings). Of course there are design trade-offs between them. From my perspective two major benefits of immutable values are:
if a compiler works with immutable values it can perform many optimizations to speed up code;
a user is can be sure that passing an immutable to a function will not change it and such encapsulation can simplify code analysis.
However, in particular, if you want to wrap an immutable value in a mutable wrapper a standard way to do it is to use Ref like this:
julia> x = Ref(1)
Base.RefValue{Int64}(1)
julia> x[]
1
julia> x[] = 10
10
julia> x
Base.RefValue{Int64}(10)
julia> x[]
10
You can pass such values to a function and modify them inside. Of course Ref introduces a different type so method implementation has to be a bit different.
Variables
A variable is a name bound to a value. In general, except for some special cases like:
rebinding a variable from module A in module B;
redefining some constants, e.g. trying to reassign a function name with a non-function value;
rebinding a variable that has a specified type of allowed values with a value that cannot be converted to this type;
you can rebind a variable to point to any value you wish. Rebinding is performed most of the time using = or some special constructs (like in for, let or catch statements).
Now - getting to the point - function is passed a value not a binding. You can modify a binding of a function parameter (in other words: you can rebind a value that a parameter is pointing to), but this parameter is a fresh variable whose scope lies inside a function.
If, for instance, we wanted a call like:
x = 10
f(x)
change a binding of variable x it is impossible because f does not even know of existence of x. It only gets passed its value. In particular - as I have noted above - adding such a functionality would break the rule that module A cannot rebind variables form module B, as f might be defined in a module different than where x is defined.
What to do
Actually it is easy enough to work without this feature from my experience:
What I typically do is simply return a value from a function that I assign to a variable. In Julia it is very easy because of tuple unpacking syntax like e.g. x,y,z = f(x,y,z), where f can be defined e.g. as f(x,y,z) = 2x,3y,4z;
You can use macros which get expanded before code execution and thus can have an effect modifying a binding of a variable, e.g. macro plusone(x) return esc(:($x = $x+1)) end and now writing y=100; #plusone(y) will change the binding of y;
Finally you can use Ref as discussed above (or any other mutable wrapper - as you have noted in your question).
"Does anyone know the reasons why Julia chose a design of functions where the parameters given as inputs cannot be modified?" asked by Schemer
Your question is wrong because you assume the wrong things.
Parameters are variables
When you pass things to a function, often those things are values and not variables.
for example:
function double(x::Int64)
2 * x
end
Now what happens when you call it using
double(4)
What is the point of the function modifying it's parameter x , it's pointless. Furthermore the function has no idea how it is called.
Furthermore, Julia is built for speed.
A function that modifies its parameter will be hard to optimise because it causes side effects. A side effect is when a procedure/function changes objects/things outside of it's scope.
If a function does not modifies a variable that is part of its calling parameter then you can be safe knowing.
the variable will not have its value changed
the result of the function can be optimised to a constant
not calling the function will not break the program's behaviour
Those above three factors are what makes FUNCTIONAL language fast and NON FUNCTIONAL language slow.
Furthermore when you move into Parallel programming or Multi Threaded programming, you absolutely DO NOT WANT a variable having it's value changed without you (The programmer) knowing about it.
"How would you implement with your proposed macro, the function F(x) which returns a boolean value and modifies c by c:= c + 1. F can be used in the following piece of Ada code : c:= 0; While F(c) Loop ... End Loop;" asked by Schemer
I would write
function F(x)
boolean_result = perform_some_logic()
return (boolean_result,x+1)
end
flag = true
c = 0
(flag,c) = F(c)
while flag
do_stuff()
(flag,c) = F(c)
end
"Unfortunately no, because, and I should have said that, c has to take again the value 0 when F return the value False (c increases as long the Loop lives and return to 0 when it dies). " said Schemer
Then I would write
function F(x)
boolean_result = perform_some_logic()
if boolean_result == true
return (true,x+1)
else
return (false,0)
end
end
flag = true
c = 0
(flag,c) = F(c)
while flag
do_stuff()
(flag,c) = F(c)
end

Replacing functions with Table Lookups

I've been watching this MSDN video with Brian Beckman and I'd like to better understand something he says:
Every imperitive programmer goes through this phase of learning that
functions can be replaced with table lookups
Now, I'm a C# programmer who never went to university, so perhaps somewhere along the line I missed out on something everyone else learned to understand.
What does Brian mean by:
functions can be replaced with table lookups
Are there practical examples of this being done and does it apply to all functions? He gives the example of the sin function, which I can make sense of, but how do I make sense of this in more general terms?
Brian just showed that the functions are data too. Functions in general are just a mapping of one set to another: y = f(x) is mapping of set {x} to set {y}: f:X->Y. The tables are mappings as well: [x1, x2, ..., xn] -> [y1, y2, ..., yn].
If function operates on finite set (this is the case in programming) then it's can be replaced with a table which represents that mapping. As Brian mentioned, every imperative programmer goes through this phase of understanding that the functions can be replaced with the table lookups just for performance reason.
But it doesn't mean that all functions easily can or should be replaced with the tables. It only means that you theoretically can do that for every function. So the conclusion would be that the functions are data because tables are (in the context of programming of course).
There is a lovely trick in Mathematica that creates a table as a side-effect of evaluating function-calls-as-rewrite-rules. Consider the classic slow-fibonacci
fib[1] = 1
fib[2] = 1
fib[n_] := fib[n-1] + fib[n-2]
The first two lines create table entries for the inputs 1 and 2. This is exactly the same as saying
fibTable = {};
fibTable[1] = 1;
fibTable[2] = 1;
in JavaScript. The third line of Mathematica says "please install a rewrite rule that will replace any occurrence of fib[n_], after substituting the pattern variable n_ with the actual argument of the occurrence, with fib[n-1] + fib[n-2]." The rewriter will iterate this procedure, and eventually produce the value of fib[n] after an exponential number of rewrites. This is just like the recursive function-call form that we get in JavaScript with
function fib(n) {
var result = fibTable[n] || ( fib(n-1) + fib(n-2) );
return result;
}
Notice it checks the table first for the two values we have explicitly stored before making the recursive calls. The Mathematica evaluator does this check automatically, because the order of presentation of the rules is important -- Mathematica checks the more specific rules first and the more general rules later. That's why Mathematica has two assignment forms, = and :=: the former is for specific rules whose right-hand sides can be evaluated at the time the rule is defined; the latter is for general rules whose right-hand sides must be evaluated when the rule is applied.
Now, in Mathematica, if we say
fib[4]
it gets rewritten to
fib[3] + fib[2]
then to
fib[2] + fib[1] + 1
then to
1 + 1 + 1
and finally to 3, which does not change on the next rewrite. You can imagine that if we say fib[35], we will generate enormous expressions, fill up memory, and melt the CPU. But the trick is to replace the final rewrite rule with the following:
fib[n_] := fib[n] = fib[n-1] + fib[n-2]
This says "please replace every occurrence of fib[n_] with an expression that will install a new specific rule for the value of fib[n] and also produce the value." This one runs much faster because it expands the rule-base -- the table of values! -- at run time.
We can do likewise in JavaScript
function fib(n) {
var result = fibTable[n] || ( fib(n-1) + fib(n-2) );
fibTable[n] = result;
return result;
}
This runs MUCH faster than the prior definition of fib.
This is called "automemoization" [sic -- not "memorization" but "memoization" as in creating a memo for yourself].
Of course, in the real world, you must manage the sizes of the tables that get created. To inspect the tables in Mathematica, do
DownValues[fib]
To inspect them in JavaScript, do just
fibTable
in a REPL such as that supported by Node.JS.
In the context of functional programming, there is the concept of referential transparency. A function that is referentially transparent can be replaced with its value for any given argument (or set of arguments), without changing the behaviour of the program.
Referential Transparency
For example, consider a function F that takes 1 argument, n. F is referentially transparent, so F(n) can be replaced with the value of F evaluated at n. It makes no difference to the program.
In C#, this would look like:
public class Square
{
public static int apply(int n)
{
return n * n;
}
public static void Main()
{
//Should print 4
Console.WriteLine(Square.apply(2));
}
}
(I'm not very familiar with C#, coming from a Java background, so you'll have to forgive me if this example isn't quite syntactically correct).
It's obvious here that the function apply cannot have any other value than 4 when called with an argument of 2, since it's just returning the square of its argument. The value of the function only depends on its argument, n; in other words, referential transparency.
I ask you, then, what the difference is between Console.WriteLine(Square.apply(2)) and Console.WriteLine(4). The answer is, there's no difference at all, for all intents are purposes. We could go through the entire program, replacing all instances of Square.apply(n) with the value returned by Square.apply(n), and the results would be the exact same.
So what did Brian Beckman mean with his statement about replacing function calls with a table lookup? He was referring to this property of referentially transparent functions. If Square.apply(2) can be replaced with 4 with no impact on program behaviour, then why not just cache the values when the first call is made, and put it in a table indexed by the arguments to the function. A lookup table for values of Square.apply(n) would look somewhat like this:
n: 0 1 2 3 4 5 ...
Square.apply(n): 0 1 4 9 16 25 ...
And for any call to Square.apply(n), instead of calling the function, we can simply find the cached value for n in the table, and replace the function call with this value. It's fairly obvious that this will most likely bring about a large speed increase in the program.

prolog recursion

am making a function that will send me a list of all possible elemnts .. in each iteration its giving me the last answer .. but after the recursion am only getting the last answer back .. how can i make it give back every single answer ..
thank you
the problem is that am trying to find all possible distributions for a list into other lists .. the code
addIn(_,[],Result,Result).
addIn(C,[Element|Rest],[F|R],Result):-
member( Members , [F|R]),
sumlist( Members, Sum),
sumlist([Element],ElementLength),
Cap is Sum + ElementLength,
(Cap =< Ca,
append([Element], Members,New)....
by calling test .. am getting back all the list of possible answers .. now if i tried to do something that will fail like
bp(3,11,[8,2,4,6,1,8,4],Answer).
it will just enter a while loop .. more over if i changed the
bp(NB,C,OL,A):-
addIn(C,OL,[[],[],[]],A);
bp(NB,C,_,A).
to and instead of Or .. i get error :
ERROR: is/2: Arguments are not
sufficiently instantiated
appreciate the help ..
Thanks alot #hardmath
It sounds like you are trying to write your own version of findall/3, perhaps limited to a special case of an underlying goal. Doing it generally (constructing a list of all solutions to a given goal) in a user-defined Prolog predicate is not possible without resorting to side-effects with assert/retract.
However a number of useful special cases can be implemented without such "tricks". So it would be helpful to know what predicate defines your "all possible elements". [It may also be helpful to state which Prolog implementation you are using, if only so that responses may include links to documentation for that version.]
One important special case is where the "universe" of potential candidates already exists as a list. In that case we are really asking to find the sublist of "all possible elements" that satisfy a particular goal.
findSublist([ ],_,[ ]).
findSublist([H|T],Goal,[H|S]) :-
Goal(H),
!,
findSublist(T,Goal,S).
findSublist([_|T],Goal,S) :-
findSublist(T,Goal,S).
Many Prologs will allow you to pass the name of a predicate Goal around as an "atom", but if you have a specific goal in mind, you can leave out the middle argument and just hardcode your particular condition into the middle clause of a similar implementation.
Added in response to code posted:
I think I have a glimmer of what you are trying to do. It's hard to grasp because you are not going about it in the right way. Your predicate bp/4 has a single recursive clause, variously attempted using either AND or OR syntax to relate a call to addIn/4 to a call to bp/4 itself.
Apparently you expect wrapping bp/4 around addIn/4 in this way will somehow cause addIn/4 to accumulate or iterate over its solutions. It won't. It might help you to see this if we analyze what happens to the arguments of bp/4.
You are calling the formal arguments bp(NB,C,OL,A) with simple integers bound to NB and C, with a list of integers bound to OL, and with A as an unbound "output" Answer. Note that nothing is ever done with the value NB, as it is not passed to addIn/4 and is passed unchanged to the recursive call to bp/4.
Based on the variable names used by addIn/4 and supporting predicate insert/4, my guess is that NB was intended to mean "number of bins". For one thing you set NB = 3 in your test/0 clause, and later you "hardcode" three empty lists in the third argument in calling addIn/4. Whatever Answer you get from bp/4 comes from what addIn/4 is able to do with its first two arguments passed in, C and OL, from bp/4. As we noted, C is an integer and OL a list of integers (at least in the way test/0 calls bp/4).
So let's try to state just what addIn/4 is supposed to do with those arguments. Superficially addIn/4 seems to be structured for self-recursion in a sensible way. Its first clause is a simple termination condition that when the second argument becomes an empty list, unify the third and fourth arguments and that gives "answer" A to its caller.
The second clause for addIn/4 seems to coordinate with that approach. As written it takes the "head" Element off the list in the second argument and tries to find a "bin" in the third argument that Element can be inserted into while keeping the sum of that bin under the "cap" given by C. If everything goes well, eventually all the numbers from OL get assigned to a bin, all the bins have totals under the cap C, and the answer A gets passed back to the caller. The way addIn/4 is written leaves a lot of room for improvement just in basic clarity, but it may be doing what you need it to do.
Which brings us back to the question of how you should collect the answers produced by addIn/4. Perhaps you are happy to print them out one at a time. Perhaps you meant to collect all the solutions produced by addIn/4 into a single list. To finish up the exercise I'll need you to clarify what you really want to do with the Answers from addIn/4.
Let's say you want to print them all out and then stop, with a special case being to print nothing if the arguments being passed in don't allow a solution. Then you'd probably want something of this nature:
newtest :-
addIn(12,[7, 3, 5, 4, 6, 4, 5, 2], Answer),
format("Answer = ~w\n",[Answer]),
fail.
newtest.
This is a standard way of getting predicate addIn/4 to try all possible solutions, and then stop with the "fall-through" success of the second clause of newtest/0.
(Added) Suggestions about coding addIn/4:
It will make the code more readable and maintainable if the variable names are clear. I'd suggest using Cap instead of C as the first argument to addIn/4 and BinSum when you take the sum of items assigned to a "bin". Likewise Bin would be better where you used Members. In the third argument to addIn/4 (in the head of the second clause) you don't need an explicit list structure [F|R] since you never refer to either part F or R by itself. So there I'd use Bins.
Some of your predicate calls don't accomplish much that you cannot do more easily. For example, your second call to sumlist/2 involves a list with one item. Thus the sum is just the same as that item, i.e. ElementLength is the same as Element. Here you could just replace both calls to sumlist/2 with one such call:
sumlist([Element|Bin],BinSum)
and then do your test comparing BinSum with Cap. Similarly your call to append/3 just adjoins the single item Element to the front of the list (I'm calling) Bin, so you could just replace what you have called New with [Element|Bin].
You have used an extra pair of parentheses around the last four subgoals (in the second clause for addIn/4). Since AND is implied for all the subgoals of this clause, using the extra pair of parentheses is unnecessary.
The code for insert/4 isn't shown now, but it could be a source of some unintended "backtracking" in special cases. The better approach would be to have the first call (currently to member/2) be your only point of indeterminacy, i.e. when you choose one of the bins, do it by replacing it with a free variable that gets unified with [Element|Bin] at the next to last step.

understanding referential transparency

Generally, I have a headache because something is wrong with my reasoning:
For 1 set of arguments, referential transparent function will always return 1 set of output values.
that means that such function could be represented as a truth table (a table where 1 set of output parameters is specified for 1 set of arguments).
that makes the logic behind such functions is combinational (as opposed to sequential)
that means that with pure functional language (that has only rt functions) it is possible to describe only combinational logic.
The last statement is derived from this reasoning, but it's obviously false; that means there is an error in reasoning. [question: where is error in this reasoning?]
UPD2. You, guys, are saying lots of interesting stuff, but not answering my question. I defined it more explicitly now. Sorry for messing up with question definition!
Question: where is error in this reasoning?
A referentially transparent function might require an infinite truth table to represent its behavior. You will be hard pressed to design an infinite circuit in combinatory logic.
Another error: the behavior of sequential logic can be represented purely functionally as a function from states to states. The fact that in the implementation these states occur sequentially in time does not prevent one from defining a purely referentially transparent function which describes how state evolves over time.
Edit: Although I apparently missed the bullseye on the actual question, I think my answer is pretty good, so I'm keeping it :-) (see below).
I guess a more concise way to phrase the question might be: can a purely functional language compute anything an imperative one can?
First of all, suppose you took an imperative language like C and made it so you can't alter variables after defining them. E.g.:
int i;
for (i = 0; // okay, that's one assignment
i < 10; // just looking, that's all
i++) // BUZZZ! Sorry, can't do that!
Well, there goes your for loop. Do we get to keep our while loop?
while (i < 10)
Sure, but it's not very useful. i can't change, so it's either going to run forever or not run at all.
How about recursion? Yes, you get to keep recursion, and it's still plenty useful:
int sum(int *items, unsigned int count)
{
if (count) {
// count the first item and sum the rest
return *items + sum(items + 1, count - 1);
} else {
// no items
return 0;
}
}
Now, with functions, we don't alter state, but variables can, well, vary. Once a variable passes into our function, it's locked in. However, we can call the function again (recursion), and it's like getting a brand new set of variables (the old ones stay the same). Although there are multiple instances of items and count, sum((int[]){1,2,3}, 3) will always evaluate to 6, so you can replace that expression with 6 if you like.
Can we still do anything we want? I'm not 100% sure, but I think the answer is "yes". You certainly can if you have closures, though.
You have it right. The idea is, once a variable is defined, it can't be redefined. A referentially transparent expression, given the same variables, always yields the same result value.
I recommend looking into Haskell, a purely functional language. Haskell doesn't have an "assignment" operator, strictly speaking. For instance:
my_sum numbers = ??? where
i = 0
total = 0
Here, you can't write a "for loop" that increments i and total as it goes along. All is not lost, though. Just use recursion to keep getting new is and totals:
my_sum numbers = f 0 0 where
f i total =
if i < length numbers
then f i' total'
else total
where
i' = i+1
total' = total + (numbers !! i)
(Note that this is a stupid way to sum a list in Haskell, but it demonstrates a method of coping with single assignment.)
Now, consider this highly imperative-looking code:
main = do
a <- readLn
b <- readLn
print (a + b)
It's actually syntactic sugar for:
main =
readLn >>= (\a ->
readLn >>= (\b ->
print (a + b)))
The idea is, instead of main being a function consisting of a list of statements, main is an IO action that Haskell executes, and actions are defined and chained together with bind operations. Also, an action that does nothing, yielding an arbitrary value, can be defined with the return function.
Note that bind and return aren't specific to actions. They can be used with any type that calls itself a Monad to do all sorts of funky things.
To clarify, consider readLn. readLn is an action that, if executed, would read a line from standard input and yield its parsed value. To do something with that value, we can't store it in a variable because that would violate referential transparency:
a = readLn
If this were allowed, a's value would depend on the world and would be different every time we called readLn, meaning readLn wouldn't be referentially transparent.
Instead, we bind the readLn action to a function that deals with the action, yielding a new action, like so:
readLn >>= (\x -> print (x + 1))
The result of this expression is an action value. If Haskell got off the couch and performed this action, it would read an integer, increment it, and print it. By binding the result of an action to a function that does something with the result, we get to keep referential transparency while playing around in the world of state.
As far as I understand it, referential transparency just means: A given function will always yield the same result when invoked with the same arguments. So, the mathematical functions you learned about in school are referentially transparent.
A language you could check out in order to learn how things are done in a purely functional language would be Haskell. There are ways to use "updateable storage possibilities" like the Reader Monad, and the State Monad for example. If you're interested in purely functional data structures, Okasaki might be a good read.
And yes, you're right: Order of evaluation in a purely functional language like haskell does not matter as in non-functional languages, because if there are no side effects, there is no reason to do someting before/after something else -- unless the input of one depends on the output of the other, or means like monads come into play.
I don't really know about the truth-table question.
Here's my stab at answering the question:
Any system can be described as a combinatorial function, large or small.
There's nothing wrong with the reasoning that pure functions can only deal with combinatorial logic -- it's true, just that functional languages hide that from you to some extent or another.
You could even describe, say, the workings of a game engine as a truth table or a combinatorial function.
You might have a deterministic function that takes in "the current state of the entire game" as the RAM occupied by the game engine and the keyboard input, and returns "the state of the game one frame later". The return value would be determined by the combinations of the bits in the input.
Of course, in any meaningful and sane function, the input is parsed down to blocks of integers, decimals and booleans, but the combinations of the bits in those values is still determining the output of your function.
Keep in mind also that basic digital logic can be described in truth tables. The only reason that that's not done for anything more than, say, arithmetic on 4-bit integers, is because the size of the truth table grows exponentially.
The error in Your reasoning is the following:
"that means that such function could be represented as a truth table".
You conclude that from a functional language's property of referential transparency. So far the conclusion would sound plausible, but You oversee that a function is able to accept collections as input and process them in contrast to the fixed inputs of a logic gate.
Therefore a function does not equal a logic gate but rather a construction plan of such a logic gate depending on the actual (at runtime determined) input!
To comment on Your comment: Functional languages can - although stateless - implement a state machine by constructing the states from scratch each time they are being accessed.

How do I detect circular logic or recursion in a custom expression evaluator?

I've written an experimental function evaluator that allows me to bind simple functions together such that when the variables change, all functions that rely on those variables (and the functions that rely on those functions, etc.) are updated simultaneously. The way I do this is instead of evaluating the function immediately as it's entered in, I store the function. Only when an output value is requested to I evaluate the function, and I evaluate it each and every time an output value is requested.
For example:
pi = 3.14159
rad = 5
area = pi * rad * rad
perim = 2 * pi * rad
I define 'pi' and 'rad' as variables (well, functions that return a constant), and 'area' and 'perim' as functions. Any time either 'pi' or 'rad' change, I expect the results of 'area' and 'perim' to change in kind. Likewise, if there were any functions depending on 'area' or 'perim', the results of those would change as well.
This is all working as expected. The problem here is when the user introduces recursion - either accidental or intentional. There is no logic in my grammar - it's simply an evaluator - so I can't provide the user with a way to 'break out' of recursion. I'd like to prevent it from happening at all, which means I need a way to detect it and declare the offending input as invalid.
For example:
a = b
b = c
c = a
Right now evaluating the last line results in a StackOverflowException (while the first two lines evaluate to '0' - an undeclared variable/function is equal to 0). What I would like to do is detect the circular logic situation and forbid the user from inputing such a statement. I want to do this regardless of how deep the circular logic is hidden, but I have no idea how to go about doing so.
Behind the scenes, by the way, input strings are converted to tokens via a simple scanner, then to an abstract syntax tree via a hand-written recursive descent parser, then the AST is evaluated. The language is C#, but I'm not looking for a code solution - logic alone will be fine.
Note: this is a personal project I'm using to learn about how parsers and compilers work, so it's not mission critical - however the knowledge I take away from this I do plan to put to work in real life at some point. Any help you guys can provide would be appreciated greatly. =)
Edit: In case anyone's curious, this post on my blog describes why I'm trying to learn this, and what I'm getting out of it.
I've had a similar problem to this in the past.
My solution was to push variable names onto a stack as I recursed through the expressions to check syntax, and pop them as I exited a recursion level.
Before I pushed each variable name onto the stack, I would check if it was already there.
If it was, then this was a circular reference.
I was even able to display the names of the variables in the circular reference chain (as they would be on the stack and could be popped off in sequence until I reached the offending name).
EDIT: Of course, this was for single formulae... For your problem, a cyclic graph of variable assignments would be the better way to go.
A solution (probably not the best) is to create a dependency graph.
Each time a function is added or changed, the dependency graph is checked for cylces.
This can be cut short. Each time a function is added, or changed, flag it. If the evaluation results in a call to the function that is flagged, you have a cycle.
Example:
a = b
flag a
eval b (not found)
unflag a
b = c
flag b
eval c (not found)
unflag b
c = a
flag c
eval a
eval b
eval c (flagged) -> Cycle, discard change to c!
unflag c
In reply to the comment on answer two:
(Sorry, just messed up my openid creation so I'll have to get the old stuff linked later...)
If you switch "flag" for "push" and "unflag" for "pop", it's pretty much the same thing :)
The only advantage of using the stack is the ease of which you can provide detailed information on the cycle, no matter what the depth. (Useful for error messages :) )
Andrew

Resources