I am wondering is it possible to read an excel file that is currently open, and capture things you manually test into R?
I have an excel file opened (in Windows). In my excel, I have connected to a SSAS cube. And I do some manipulations using PivotTable Fields (like changing columns, rows, and filters) to understand the data. I would like to import some of the results I see in excel into R to create a report. (I mean without manually copy/paste the results into R or saving excel sheets to read them later). Is this a possible thing to do in R?
UPDATE
I was able to find an answer. Thanks to awesome package created by Andri Signorell.
library(DescTools)
fxls<-GetCurrXL()
tttt<-XLGetRange(header=TRUE)
I was able to find an answer. Thanks to awesome package created by Andri Signorell.
library(DescTools)
fxls<-GetCurrXL()
tttt<-XLGetRange(header=TRUE)
Copy the values you are interested in (in a single spread sheet at a time) to clipboard.
Then
dat = read.table('clipboard', header = TRUE, sep = "\t")
You can save the final excel spreadsheet as a csv file (comma separated).
Then use read.csv("filename") in R and go from there. Alternatively, you can use read.table("filename",sep=",") which is the more general version of read.csv(). For tab separated files, use sep="\t" and so forth.
I will assume this blog post will be useful: http://www.r-bloggers.com/a-million-ways-to-connect-r-and-excel/
In the R console, you can type
?read.table
for more information on the arguments and uses of this function. You can just repeat the same call in R after Excel sheet changes have been saved.
Related
I have a R code that uses joins from various tables and finally have an output dataframe. I need this to be appended to a new worksheet in excel file that already has three sheets in it. I am on a mac and however I try the library(rjava) that is required for library(xlsx) wont load. Is there any other library (that doesnt need java) that I can use for this?
Edit to add: the existing excel sheet has graphs and charts in it
I have some excel file with simple formulas like =SUM(A1:A3).
I need to import the file into R, but before that I need to refresh the formulas. Is there a way to refresh the file from within R? There are good packages for importing the data in a R dataframe (eg. the R xslx package) but I need to refresh my formulas first.
Any suggestions?
Thanks!
You should be able to do this with RDCOMClient:
library(RDCOMClient)
ex = COMCreate("Excel.Application")
book = ex$Workbooks()$Open("my_file.xlsx")
book$Worksheets("Sheet1")$Calculate() # if you have many sheets you could loop through them or use apply functions based on their actual names
book$Save()
book$Close()
Here's another thread on the underlying VBA
I have a 174603 rows and 178 column dataframe, which I'm importing to Excel using openxlsx::saveWorkbook, (Using this package to obtain the aforementioned format of cells, with colors, header styles and so on). But the process is extremely slow, (depending on the amount of memory used by the machine it can take from 7 to 17 minutes!!) and I need a way to reduce this significantly (Doesn't need to be seconds, but anything bellow 5 min would be OK)
I've already searched other questions but they all seem to focus either in exporting to R (I have no problem with this) or writing non-formatted files to R (using write.csv and other options of the like)
Apparently I can't use xlsx package because of the settings on my computer (industrial computer, Check comments on This question)
Any suggestions regarding packages or other functionalities inside this package to make this run faster would be highly appreciated.
This question has some time ,but I had the same problem as you and came up with a solution worth mentioning.
There is package called writexl that has implemented a way to export a data frame to Excel using the C library libxlsxwriter. You can export to excel using the next code:
library(writexl)
writexl::write_xlsx(df, "Excel.xlsx",format_headers = TRUE)
The parameter format_headers only apply centered and bold titles, but I had edited the C code of the its source in github writexl library made by ropensci.
You can download it or clone it. Inside src folder you can edit write_xlsx.c file.
For example in the part that he is inserting the header format
//how to format headers (bold + center)
lxw_format * title = workbook_add_format(workbook);
format_set_bold(title);
format_set_align(title, LXW_ALIGN_CENTER);
you can add this lines to add background color to the header
format_set_pattern (title, LXW_PATTERN_SOLID);
format_set_bg_color(title, 0x8DC4E4);
There are lots of formating you can do searching in the libxlsxwriter library
When you have finished editing that file and given you have the source code in a folder called writexl, you can build and install the edited package by
shell("R CMD build writexl")
install.packages("writexl_1.2.tar.gz", repos = NULL)
Exporting again using the first chunk of code will generate the Excel with formats and faster than any other library I know about.
Hope this helps.
Have you tried ;
write.table(GroupsAlldata, file = 'Groupsalldata.txt')
in order to obtain it in txt format.
Then on Excel, you can simply transfer you can 'text to column' to put your data into a table
good luck
I am working with an Excel file. It has 3 books. I need help with extracting only one of the books into R. I did a Google search and could not glean the solution from the information. I am working on a MacBook; I am running the latest version of R.
More specifically, here is the question.
The data set has three workbooks "Sales", "Resources", and "Supplies". How do you read in only the items from the "Sales" workbook?
Thank you.
I think the best way, is to save the worksheet you need as csv, and use read.csv in R. but if you prefer to read directly the excel file:
Use the package XLConnect
df <- readWorksheetFromFile("excel_file.xlsx", sheet = "Sales")
I am looking for an easy way to get objects into MS Excel.
(I am using the preinstalled "Puromycin"-dataset for the examples)
I would like to place the contents of these objects to a single excel file:
Puromycin
summary(Puromycin$rate)
summary(Purymycin$conc)
table(Puromycin$state)
lm( conc ~ rate , data=Puromycin)
By "contents" i mean what is shown in the console when i press enter. I dont know what to call it.
I tried to do this:
sink("datafilewhichexcelhopefullyunderstands.csv")
Puromycin
summary(Puromycin$rate)
summary(Purymycin$conc)
table(Puromycin$state)
lm( conc ~ rate , data=Puromycin)
sink()
This gives med a file with the CSV-extension, however when i open the file in notepad,
there is comma-separation. That means that i cant get Excel to open it properly. By properly
i mean that each number is in its own cell.
Others have suggested this for a similar problem
https://stackoverflow.com/a/13007555/1831980
But as a novice i feel that the solution is too complex, and I am hoping for a simpler method.
What I am doing now is this:
write.table(Puromycin, file="clipboard" , sep=";" , row.names=FALSE )
write.table(summary(Purymycin$conc), file="clipboard" , sep=";" , row.names=FALSE )
... etc...
But this requires i lot of copy-ing and pasting, which I hope to eliminate.
Any help would appreciated.
write.table and its friends are intended to write out columns of data separated by whatever separator is specified. Your clipboard contains several data types because you are using summary which always gives a unique output.
For writing the data values out, you can use write.csv on a data frame and then open with Excel. For example, Puromycin is already a data frame (which you can see with str(Puromycin)) so you can just write it out directly:
write.csv(file = "some file.csv", x = Puromycin)
Which will go into the current working directory (which can be determined with getwd()).
To write out/save the results of the regression model is a bit more of a challenge. You could definitely use sink as you did, but specify an extension of .txt on your file so a text editor can open it. There are fancier methods (sweave, knitr) which you might want to look into in the long run, as they can write really nice reports automatically.
In the meantime, get to know str(any R object) as it will be your friend. You can see all the objects in your workspace with ls().
This will only be helpful if you are prepared to use Excel's Data/Text to Columns functions:
capture.output( sapply( c(Puromycin,
summary(Puromycin$rate),
summary(Puromycin$conc),
table(Puromycin$state),
lm( conc ~ rate , data=Puromycin) ), FUN=print), file="datafilewhichexcelhopefullyunderstands.csv", append=TRUE)
The problem being that Excel will not read the whitespace as a cell separator unless you specifically tell it to. You can (and I have often done so) use the fixed filed input features offered by the Text-to-Columns dialog interface.
Your simplest option may be to use the RExcel tool, it transfers information between R and Excel. However it is not free software.
The XLConnect package is another option, it can be used to write information directly to an Excel file.
The tricky part is the lm call. lm does not return a simple vector, matrix, or data frame (all of which are easy to convert to csv or send directly) and there is not a clear way to convert the various parts of a list to cells in a spreadsheet. What would be better is to use extractor functions to pull the important parts from the return of lm or the summary of the lm object and send those to Excel using the other tools.
If you can tell us more about why you want the numbers in Excel and what you plan to do with them after, then we may be able to offer better help (you may be able to completely skip excel).
If the main goal is to share output with others then you should really look at the knitr package (or other related packages). This will not create Excel files, but can be used (along with the pandoc program and possibly other tools) to create a report file in a format easy to share with others not familiar with R. You could put everything into a .pdf file or a .docx file (the latter read by MS Word and would have tables wich can be edited using Word). There is not a simple way to get edits back into R, but with the track changes you can easily see what changes have been made and hand edit your R script/template accordingly.