Clean way to calculate both group and overall statistics - r

I would like like to calculate the median not only for different groups of my data, but also the median over all groups and store the result in a single data.frame. While accomplishing each of these tasks separately is easy, I have not found a clean way to do both at the same time.
Right now, what I'm doing is calculate both statistics separately; then join the results; then tidy the data if necessary. Here's an example of what this may look like if I wanted to know the median delay per day and per month:
library(dplyr)
library(hflights)
data(hflights)
# Calculate both statistics separately
per_day <- hflights %>%
group_by(Year, Month, DayofMonth) %>%
summarise(Delay = mean(ArrDelay, na.rm = TRUE)) %>%
mutate(Interval = "Daily")
per_month <- hflights %>%
group_by(Year, Month) %>%
summarise(Delay = mean(ArrDelay, na.rm = TRUE)) %>%
mutate(Interval = "Monthly", DayofMonth = NA)
# Join into a single data.frame
my_summary <- full_join(per_day, per_month,
by = c("Year", "Month", "DayofMonth", "Interval", "Delay"))
my_summary
# Source: local data frame [377 x 5]
# Groups: Year, Month
#
# Year Month DayofMonth Delay Interval
# 1 2011 1 1 10.067642 Daily
# 2 2011 1 2 10.509745 Daily
# 3 2011 1 3 6.038627 Daily
# 4 2011 1 4 7.970740 Daily
# 5 2011 1 5 4.172650 Daily
# 6 2011 1 6 6.069909 Daily
# 7 2011 1 7 3.907295 Daily
# 8 2011 1 8 3.070140 Daily
# 9 2011 1 9 17.254325 Daily
# 10 2011 1 10 11.040388 Daily
# .. ... ... ... ... ...
Are there better ways to do this?
(Note that in many cases one could easily progressively roll up summaries as pointed out in the Introduction to dplyr. However, this doesn't work for statistics like median, mean etc.)

As a one-off table. This is fairly straightforward in data.table:
require(data.table)
setDT(hflights)[,{
mo_del <- mean(ArrDelay,na.rm=TRUE)
.SD[,.(DailyDelay = mean(ArrDelay,na.rm=TRUE),MonthlyDelay = mo_del),by=DayofMonth]
},by=.(Year,Month)]
# Year Month DayofMonth DailyDelay MonthlyDelay
# 1: 2011 1 1 10.0676417 4.926065
# 2: 2011 1 2 10.5097451 4.926065
# 3: 2011 1 3 6.0386266 4.926065
# 4: 2011 1 4 7.9707401 4.926065
# 5: 2011 1 5 4.1726496 4.926065
# ---
# 361: 2011 12 14 1.0293610 5.013244
# 362: 2011 12 17 -0.1049822 5.013244
# 363: 2011 12 24 -4.1457490 5.013244
# 364: 2011 12 25 -2.2976827 5.013244
# 365: 2011 12 31 46.4846491 5.013244
How it works. The basic syntax is DT[i,j,by].
With by=.(Year,Month), all operations in j are done per "by group."
We can nest another "by group" using the data.table of the current Subset of Data, .SD.
To return columns in j we use .(colname1=col1,colname2=col2,...).
Creating new variables. Alternately, we could create new variables in hflights using := in j.
hflights[,DailyDelay := mean(ArrDelay,na.rm=TRUE),.(Year,Month,DayofMonth)]
hflights[,MonthlyDelay := mean(ArrDelay,na.rm=TRUE),.(Year,Month)]
Then we can view the summary table:
hflights[,.GRP,.(Year,Month,DayofMonth,DailyDelay,MonthlyDelay)]
# Year Month DayofMonth DailyDelay MonthlyDelay .GRP
# 1: 2011 1 1 10.0676417 4.926065 1
# 2: 2011 1 2 10.5097451 4.926065 2
# 3: 2011 1 3 6.0386266 4.926065 3
# 4: 2011 1 4 7.9707401 4.926065 4
# 5: 2011 1 5 4.1726496 4.926065 5
# ---
# 361: 2011 12 14 1.0293610 5.013244 361
# 362: 2011 12 17 -0.1049822 5.013244 362
# 363: 2011 12 24 -4.1457490 5.013244 363
# 364: 2011 12 25 -2.2976827 5.013244 364
# 365: 2011 12 31 46.4846491 5.013244 365
(Something needed to be put in j here, so I used the "by group" code, .GRP.)

Related

To apply mutate with an other line

I have a table and I would like to add a column that calculates the percentage compared to the previous line.
You have to do as calculation takes the line 1 divided by line 2 and on the line 2, you indicate the result
Example
month <- c(10,11,12,13,14,15)
sell <-c(258356,278958,287928,312254,316287,318999)
df <- data.frame(month, sell)
df %>% mutate(augmentation = sell[month]/sell[month+1])
month sell resultat
1 10 258356 NA
2 11 278958 0.9261466
3 12 287928 0.9688464
4 13 312254 0.9220955
5 14 316287 0.9872489
6 15 318999 0.9914984
dplyr
You can just use lag like this:
library(dplyr)
df %>%
mutate(resultat = lag(sell)/sell)
Output:
month sell resultat
1 10 258356 NA
2 11 278958 0.9261466
3 12 287928 0.9688464
4 13 312254 0.9220955
5 14 316287 0.9872489
6 15 318999 0.9914984
data.table
Another option is using shift:
library(data.table)
setDT(df)[, resultat:= shift(sell)/sell][]
Output:
month sell resultat
1: 10 258356 NA
2: 11 278958 0.9261466
3: 12 287928 0.9688464
4: 13 312254 0.9220955
5: 14 316287 0.9872489
6: 15 318999 0.9914984

How do I go about filtering my data by the upper 50th percentile for a separate dependent variable?

I need to split my data so that when I use the facet_wrap I have the top 50 percentile for each year.
Here is a sample of my data:
# A tibble: 10,519 x 3
Species Abundance Year
<chr> <dbl> <chr>
1 Astropecten irregularis 2 2009
2 Asterias rubens 14 2009
3 Echinus esculentus 1 2009
4 Pagurus prideaux 1 2009
5 Raja clavata 1 2009
6 Astropecten irregularis 4 2009
7 Asterias rubens 47 2009
8 Henricia sp. 2 2009
9 Ophiura ophiura 8 2009
10 Solaster endeca 1 2009
# ... with 10,509 more rows
My current strategy is this:
Data <- All_years %>%
group_by(Species, Year) %>%
summarise(Abundance = sum(Abundance, na.rm = TRUE)) %>%
filter(quantile(Abundance, 0.50)<Abundance) %>%
filter(Abundance > 50)
The issue is that this gives me the top 50 percentile for the whole set while I would like it to give me the top 50 for each year so I can then display it with a facet_wrap in ggplot.

Using dplyr mutate function to create new variable conditionally based on current row

I am working on creating conditional averages for a large data set that involves # of flu cases seen during the week for several years. The data is organized as such:
What I want to do is create a new column that tabulates that average number of cases for that same week in previous years. For instance, for the row where Week.Number is 1 and Flu.Year is 2017, I would like the new row to give the average count for any year with Week.Number==1 & Flu.Year<2017. Normally, I would use the case_when() function to conditionally tabulate something like this. For instance, when calculating the average weekly volume I used this code:
mutate(average = case_when(
Flu.Year==2016 ~ mean(chcc$count[chcc$Flu.Year==2016]),
Flu.Year==2017 ~ mean(chcc$count[chcc$Flu.Year==2017]),
Flu.Year==2018 ~ mean(chcc$count[chcc$Flu.Year==2018]),
Flu.Year==2019 ~ mean(chcc$count[chcc$Flu.Year==2019]),
),
However, since there are four years of data * 52 weeks which is a lot of iterations to spell out the conditions for. Is there a way to elegantly code this in dplyr? The problem I keep running into is that I want to call values in counts column based on Week.Number and Flu.Year values in other rows conditioned on the current value of Week.Number and Flu.Year, and I am not sure how to accomplish that. Please let me know if there is further information / detail I can provide.
Thanks,
Steven
dat <- tibble( Flu.Year = rep(2016:2019,each = 52), Week.Number = rep(1:52,4), count = sample(1000, size=52*4, replace=TRUE) )
It's bad-form and, in some cases, an error when you use $-indexing within dplyr verbs.
I think a better way to get that average field is to group_by(Flu.Year) and calculate it straight-up.
library(dplyr)
set.seed(42)
dat <- tibble(
Flu.Year = sample(2016:2020, size=100, replace=TRUE),
count = sample(1000, size=100, replace=TRUE)
)
dat %>%
group_by(Flu.Year) %>%
mutate(average = mean(count)) %>%
# just to show a quick summary
slice(1:3) %>%
ungroup()
# # A tibble: 15 x 3
# Flu.Year count average
# <int> <int> <dbl>
# 1 2016 734 578.
# 2 2016 356 578.
# 3 2016 411 578.
# 4 2017 217 436.
# 5 2017 453 436.
# 6 2017 920 436.
# 7 2018 963 558
# 8 2018 609 558
# 9 2018 536 558
# 10 2019 943 543.
# 11 2019 740 543.
# 12 2019 536 543.
# 13 2020 627 494.
# 14 2020 218 494.
# 15 2020 389 494.
An alternative approach is to generate a summary table (just one row per year) and join it back in to the original data.
dat %>%
group_by(Flu.Year) %>%
summarize(average = mean(count))
# # A tibble: 5 x 2
# Flu.Year average
# <int> <dbl>
# 1 2016 578.
# 2 2017 436.
# 3 2018 558
# 4 2019 543.
# 5 2020 494.
dat %>%
group_by(Flu.Year) %>%
summarize(average = mean(count)) %>%
full_join(dat, by = "Flu.Year")
# # A tibble: 100 x 3
# Flu.Year average count
# <int> <dbl> <int>
# 1 2016 578. 734
# 2 2016 578. 356
# 3 2016 578. 411
# 4 2016 578. 720
# 5 2016 578. 851
# 6 2016 578. 822
# 7 2016 578. 465
# 8 2016 578. 679
# 9 2016 578. 30
# 10 2016 578. 180
# # ... with 90 more rows
The result, after chat:
tibble( Flu.Year = rep(2016:2018,each = 3), Week.Number = rep(1:3,3), count = 1:9 ) %>%
arrange(Flu.Year, Week.Number) %>%
group_by(Week.Number) %>%
mutate(year_week.average = lag(cumsum(count) / seq_along(count)))
# # A tibble: 9 x 4
# # Groups: Week.Number [3]
# Flu.Year Week.Number count year_week.average
# <int> <int> <int> <dbl>
# 1 2016 1 1 NA
# 2 2016 2 2 NA
# 3 2016 3 3 NA
# 4 2017 1 4 1
# 5 2017 2 5 2
# 6 2017 3 6 3
# 7 2018 1 7 2.5
# 8 2018 2 8 3.5
# 9 2018 3 9 4.5
We can use aggregate from base R
aggregate(count ~ Flu.Year, data, FUN = mean)

Aggregation on 2 columns while keeping two unique R

So I have this:
Staff Result Date Days
1 50 2007 4
1 75 2006 5
1 60 2007 3
2 20 2009 3
2 11 2009 2
And I want to get to this:
Staff Result Date Days
1 55 2007 7
1 75 2006 5
2 15 2009 5
I want to have the Staff ID and Date be unique in each row, but I want to sum 'Days' and mean 'Result'
I can't work out how to do this in R, I'm sure I need to do lots of aggregations but I keep getting different results to what I am aiming for.
Many thanks
the simplest way to do this is to group_by Staff and Date and summarise the results with dplyr package:
require(dplyr)
df <- data.frame(Staff = c(1,1,1,2,2),
Result = c(50, 75, 60, 20, 11),
Date = c(2007, 2006, 2007, 2009, 2009),
Days = c(4, 5, 3, 3, 2))
df %>%
group_by(Staff, Date) %>%
summarise(Result = floor(mean(Result)),
Days = sum(Days)) %>%
data.frame
Staff Date Result Days
1 1 2006 75 5
2 1 2007 55 7
3 2 2009 15 5
You can aggregate on two variables by using a formula and then merge the two aggregates
merge(aggregate(Result ~ Staff + Date, data=df, mean),
aggregate(Days ~ Staff + Date, data=df, sum))
Staff Date Result Days
1 1 2006 75.0 5
2 1 2007 55.0 7
3 2 2009 15.5 5
Here is another option with data.table
library(data.table)
setDT(df1)[, .(Result = floor(mean(Result)), Days = sum(Days)), .(Staff, Date)]
# Staff Date Result Days
#1: 1 2007 55 7
#2: 1 2006 75 5
#3: 2 2009 15 5

R: Insert and fill missing periods in panel data

I'm trying to learn R coming from Stata, but have run into the following two problems which I cannot seem to find elegant solutions for in R:
1) I have a panel dataset with gaps in my time variable. I would like to expand my time variable to include the gaps despite having no observed data for these rows.
In Stata I would usually go about this by setting my ID and time variables with xtset and then expanding the dataset based on this with tsfill. Is there an equivalently elegant way in R?
2) I would like to fill some of the new, blank cells with data for constant variables.
In Stata I would do this by copying data from previous (relative to my time variable) observations using the l.-prefix; for example using replace Con = l.Con.
In other words I'm asking how to go from something like this:
ID Time Num Con
1 Jan 10 A
1 Feb 15 A
1 May 20 A
2 Feb 12 B
2 Mar 14 B
2 Jun 15 B
To something like this:
ID Time Num Con
1 Jan 10 A
1 Feb 15 A
1 Mar A
1 Apr A
1 May 20 A
2 Feb 12 B
2 Mar 14 B
2 Apr B
2 May B
2 Jun 15 B
Hopefully that makes sense. Thanks in advance.
You can try merge from base R or the data.table join
library(data.table)
DT2 <- setDT(df1)[, {tmp <- match(Time, month.abb)
list(Time=month.abb[min(tmp):max(tmp)])}, .(ID,Con)]
setkey(df1[, c(1,4,2,3), with=FALSE], ID, Con, Time)[DT2]
# ID Con Time Num
# 1: 1 A Jan 10
# 2: 1 A Feb 15
# 3: 1 A Mar NA
# 4: 1 A Apr NA
# 5: 1 A May 20
# 6: 2 B Feb 12
# 7: 2 B Mar 14
# 8: 2 B Apr NA
# 9: 2 B May NA
#10: 2 B Jun 15
NOTE: It may be better to keep missing value as NA

Resources