We do a lot of full field 3D numerical simulations (CFD, FEA, etc.). The solutions take a long time to run. We often interpolate from solutions rather than rerun every case. We also interpolate between multiple solutions, which leads to even higher dimensional interpolation (like adding time, so x,y,z,t,v).
Matlab does a great job of reading data V at irregular grid of X,Y,Z coordinates, and interpolating from V using griddata, scatterdInterpolan, and/or TriScatteredInterp. For a variety of reasons, I've switched to R. This remains one key area I've not been able to find as good R equivalent. 'akima' only does x,y,V (not, x,y,z,V, much less even higher dimensions like x,y,z,t,v).
The next best thing I've found has been 'krigging'. But krigging behaves more like model fitting and projection, and often does not behave well between irregular grid points. So it's not nearly as robust as simple direct linear interpolation.
Matlab has had griddata for several decades. It's hard to believe R doesn't have an equivalent out there. Any suggestions? Or is there at least a way to use krigging to yield effectively the same result as a direct linear interpolation?
Jonathan
You might start by looking at the package "tripack" to do Delaunay triangulation, which gives you the first step in duplicating scatteredInterpolant().
R interpp() is equivalent to MATLAB scatteredInterpolant().
Related
Could you please help me to add zooming option for wordcloud
Please find reproducible example #
´http://shiny.rstudio.com/gallery/word-cloud.html´
I tried to incorporate rbokeh and plotly but couldnt find wordcloud equivalent render function
Additionally, I found ECharts from github #
´https://github.com/XD-DENG/ECharts2Shiny/tree/8ac690a8039abc2334ec06f394ba97498b518e81´
But incorporating this ECharts are also not convenient for really zoom.
Thanks in advance,
Abi
Normalisation is required only if the predictors are not meant to be comparable on the original scaling. There's no rule that says you must normalize.
PCA is a statistical method that gives you a new linear transformation. By itself, it loses nothing. All it does is to give you new principal components.
You lose information only if you choose a subset of those principal components.
Usually PCA includes centering the data as a Pre Process Step.
PCA only arranges the data in its own Axis (Eigne Vectors) System.
If you use all axis you lose no information.
Yet, usually we want to apply Dimensionality Reduction, intuitively, having less coordinates for the data.
This process means projecting the data into Sub Space which is spanned by only some of the Eigen Vectors of the data.
If one chose wisely the number of vectors one might end up with a significant reduction in the number of dimensions of the data with negligible loss of data / information.
The way to do so is by choosing Eigen Vectors which their Eigen Values sum to most of the data power.
PCA itself is invertible, so lossless.
But:
It is common to drop some components, which will cause a loss of information.
Numerical issues may cause a loss in precision.
I need to find a way to handle extremely small numbers in R, particularly in order to take the log of extremely small numbers. According to the R-manual, “on a typical R platform the smallest positive double is about 5e-324.” Well, I need to deal with numbers even smaller (at least as small as 10^-350). If R is incapable of doing this, I was wondering if there is a way I can use a program that can do this (such as Matlab or Mathematica) from R.
Specifically, I am computing a matrix of probabilities, and some of these probabilities are so small that R does not distinguish them from 0. The reason I know this is because each probability is the product of two other probabilities; so I’ll have p(x)=10^-300, p(y)=10^-50, and then p(x)*p(y)=0. I’d like to be able to do these computations, take the log of the resultant very small number (-805.905 for my example, according to Mathematica), and then continue working with the log values in R.
So to be more detailed, I have a matrix of values for p(x), a matrix of values for p(y), both computed using dnorm, and I’m computing the product. In many cases, R is capable of evaluating p(x) and p(y), but the p(x)*p(y) is too small. In a few cases, though, even the p(x) or p(y) value itself is too small, and is itself just equated to 0 in R.
I’ve seen that there is stuff out there for calling R from Mathematica, but not much pertaining to calling Mathematica from R. I’d honestly prefer to do the latter than the former here. So if any one either knows how to do this (either employing Mathematica or Matlab or something else in R) or has another solution to this issue, I’d greatly appreciate it.
Note that I realize there are a few other threads on this topic, discussing such things as using the Brobdingnag package to deal with small numbers, but these do not appear applicable here.
If I have a function f(x) = y that I don't know the form of, and if I have a long list of x and y value pairs (potentially thousands of them), is there a program/package/library that will generate potential forms of f(x)?
Obviously there's a lot of ambiguity to the possible forms of any f(x), so something that produces many non-trivial unique answers (in reduced terms) would be ideal, but something that could produce at least one answer would also be good.
If x and y are derived from observational data (i.e. experimental results), are there programs that can create approximate forms of f(x)? On the other hand, if you know beforehand that there is a completely deterministic relationship between x and y (as in the input and output of a pseudo random number generator) are there programs than can create exact forms of f(x)?
Soooo, I found the answer to my own question. Cornell has released a piece of software for doing exactly this kind of blind fitting called Eureqa. It has to be one of the most polished pieces of software that I've ever seen come out of an academic lab. It's seriously pretty nifty. Check it out:
It's even got turnkey integration with Amazon's ec2 clusters, so you can offload some of the heavy computational lifting from your local computer onto the cloud at the push of a button for a very reasonable fee.
I think that I'm going to have to learn more about GUI programming so that I can steal its interface.
(This is more of a numerical methods question.) If there is some kind of observable pattern (you can kinda see the function), then yes, there are several ways you can approximate the original function, but they'll be just that, approximations.
What you want to do is called interpolation. Two very simple (and not very good) methods are Newton's method and Laplace's method of interpolation. They both work on the same principle but they are implemented differently (Laplace's is iterative, Newton's is recursive, for one).
If there's not much going on between any two of your data points (ie, the actual function doesn't have any "bumps" whose "peaks" are not represented by one of your data points), then the spline method of interpolation is one of the best choices you can make. It's a bit harder to implement, but it produces nice results.
Edit: Sometimes, depending on your specific problem, these methods above might be overkill. Sometimes, you'll find that linear interpolation (where you just connect points with straight lines) is a perfectly good solution to your problem.
It depends.
If you're using data acquired from the real-world, then statistical regression techniques can provide you with some tools to evaluate the best fit; if you have several hypothesis for the form of the function, you can use statistical regression to discover the "best" fit, though you may need to be careful about over-fitting a curve -- sometimes the best fit (highest correlation) for a specific dataset completely fails to work for future observations.
If, on the other hand, the data was generated something synthetically (say, you know they were generated by a polynomial), then you can use polynomial curve fitting methods that will give you the exact answer you need.
Yes, there are such things.
If you plot the values and see that there's some functional relationship that makes sense, you can use least squares fitting to calculate the parameter values that minimize the error.
If you don't know what the function should look like, you can use simple spline or interpolation schemes.
You can also use software to guess what the function should be. Maybe something like Maxima can help.
Wolfram Alpha can help you guess:
http://blog.wolframalpha.com/2011/05/17/plotting-functions-and-graphs-in-wolframalpha/
Polynomial Interpolation is the way to go if you have a totally random set
http://en.wikipedia.org/wiki/Polynomial_interpolation
If your set is nearly linear, then regression will give you a good approximation.
Creating exact form from the X's and Y's is mostly impossible.
Notice that what you are trying to achieve is at the heart of many Machine Learning algorithm and therefor you might find what you are looking for on some specialized libraries.
A list of x/y values N items long can always be generated by an degree-N polynomial (assuming no x values are the same). See this article for more details:
http://en.wikipedia.org/wiki/Polynomial_interpolation
Some lists may also match other function types, such as exponential, sinusoidal, and many others. It is impossible to find the 'simplest' matching function, but the best you can do is go through a list of common ones like exponential, sinusoidal, etc. and if none of them match, interpolate the polynomial.
I'm not aware of any software that can do this for you, though.
I want to find a function that approximates a function that produces output that looks like:
Blue, Red and Green are the X, Y and Z space dimensions.
What R package should I use?
I realize this question is very old, but has it been resolved yet for you?
First the short answer: You should use
Library TuneR for the function periodogram()
Library strucchange for the function Wave() with which you build an object that will plot nicely
Considering your comment about losing information if you apply a fourier-transform on the 3 dimensions separately instead of, say, on the vector for each point in time: You will lose information anyway in the fourier-transform. The best you can do is make sure the axes are orthogonal. Looking at your data, even running the fourier over only one dimension will give you the major frequency without problems.
I'm creating a game where players can make an alloy. To make it less predictable and more interesting, I thought that the durability and hardness of an alloy should not be calculated by a simple formula, because it will be extremely easy to find extrema, where alloy have best statistics.
So the questions is, is there any formula for a function where extrema can be found only by investigating all points? Input values will be in percents: 0.0%-100.0%. I think it should look like this: half sound wave
A very simple way would be a couple of sin function, just vary the constants and the sign for each new player. Here is one example (sin(1.1*x) + sin(x) + sin(0.9 *x))^2
If you use this between 10pi and 20pi you have an by average increasing function with local minima.
Modulating a simple linear or exponential function with trigonometric functions whose frequency and amplitude are dependent on the input should get you what you want.
You don't need a formula, I think — throw a bunch of random values around your domain, and then interpolate (linear interpolation will do) between them. Then you can even change the "formula" completely each time the game is run, or once in a while, or change it slowly with time, etc, etc.
If you want something that is very hard to predict then I would suggest involving a random number generator with the same seed every time. You can use it as an envelope for whatever function you come up with (trig functions or what not) to make it more jagged.
An interesting formula to use would be that of gamma of the Black-Scholes options pricing model. It goes as follows:
You can easily replace the variables, here's a graph of how the function looks:
alt text http://www.sqbimmer.com/aalex/gamma.png