Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 7 years ago.
Improve this question
I try to visualise the difference between two histograms of distribution functions such as the difference in following two curves :
When the difference is big, you could just plot two curves on top of each other and fill the difference as denoted above, though when the difference becomes very small, this is cumbersome. Another way to plot this, is plotting the difference itself as follows :
However, this seems very hard to read for everyone seeing such a graph for the first time, so i was wondering: is there any other way you can visualise the difference between two distribution functions ?
I thought that maybe it might be an option to simply combine your two propositions, while scaling up the differences to make them visible.
What follows is an attempt to do this with ggplot2. Actually it was quite a bit more involved to do this than I initially thought, and I'm definitely not a hundred percent satisfied with the result; but maybe it helps nevertheless. Comments and improvements very welcome.
library(ggplot2)
library(dplyr)
## function that replicates default ggplot2 colors
## taken from [1]
gg_color_hue <- function(n) {
hues = seq(15, 375, length=n+1)
hcl(h=hues, l=65, c=100)[1:n]
}
## Set up sample data
set.seed(1)
n <- 2000
x1 <- rlnorm(n, 0, 1)
x2 <- rlnorm(n, 0, 1.1)
df <- bind_rows(data.frame(sample=1, x=x1), data.frame(sample=2, x=x2)) %>%
mutate(sample = as.factor(sample))
## Calculate density estimates
g1 <- ggplot(df, aes(x=x, group=sample, colour=sample)) +
geom_density(data = df) + xlim(0, 10)
gg1 <- ggplot_build(g1)
## Use these estimates (available at the same x coordinates!) for
## calculating the differences.
## Inspired by [2]
x <- gg1$data[[1]]$x[gg1$data[[1]]$group == 1]
y1 <- gg1$data[[1]]$y[gg1$data[[1]]$group == 1]
y2 <- gg1$data[[1]]$y[gg1$data[[1]]$group == 2]
df2 <- data.frame(x = x, ymin = pmin(y1, y2), ymax = pmax(y1, y2),
side=(y1<y2), ydiff = y2-y1)
g2 <- ggplot(df2) +
geom_ribbon(aes(x = x, ymin = ymin, ymax = ymax, fill = side, alpha = 0.5)) +
geom_line(aes(x = x, y = 5 * abs(ydiff), colour = side)) +
geom_area(aes(x = x, y = 5 * abs(ydiff), fill = side, alpha = 0.4))
g3 <- g2 +
geom_density(data = df, size = 1, aes(x = x, group = sample, colour = sample)) +
xlim(0, 10) +
guides(alpha = FALSE, colour = FALSE) +
ylab("Curves: density\n Shaded area: 5 * difference of densities") +
scale_fill_manual(name = "samples", labels = 1:2, values = gg_color_hue(2)) +
scale_colour_manual(limits = list(1, 2, FALSE, TRUE), values = rep(gg_color_hue(2), 2))
print(g3)
Sources: SO answer 1, SO answer 2
As suggested by #Gregor in the comments, here's a version that does two separate plots below eachother but sharing the same x axis scaling. At least the legends should obviously be tweaked.
library(ggplot2)
library(dplyr)
library(grid)
## function that replicates default ggplot2 colors
## taken from [1]
gg_color_hue <- function(n) {
hues = seq(15, 375, length=n+1)
hcl(h=hues, l=65, c=100)[1:n]
}
## Set up sample data
set.seed(1)
n <- 2000
x1 <- rlnorm(n, 0, 1)
x2 <- rlnorm(n, 0, 1.1)
df <- bind_rows(data.frame(sample=1, x=x1), data.frame(sample=2, x=x2)) %>%
mutate(sample = as.factor(sample))
## Calculate density estimates
g1 <- ggplot(df, aes(x=x, group=sample, colour=sample)) +
geom_density(data = df) + xlim(0, 10)
gg1 <- ggplot_build(g1)
## Use these estimates (available at the same x coordinates!) for
## calculating the differences.
## Inspired by [2]
x <- gg1$data[[1]]$x[gg1$data[[1]]$group == 1]
y1 <- gg1$data[[1]]$y[gg1$data[[1]]$group == 1]
y2 <- gg1$data[[1]]$y[gg1$data[[1]]$group == 2]
df2 <- data.frame(x = x, ymin = pmin(y1, y2), ymax = pmax(y1, y2),
side=(y1<y2), ydiff = y2-y1)
g2 <- ggplot(df2) +
geom_ribbon(aes(x = x, ymin = ymin, ymax = ymax, fill = side, alpha = 0.5)) +
geom_density(data = df, size = 1, aes(x = x, group = sample, colour = sample)) +
xlim(0, 10) +
guides(alpha = FALSE, fill = FALSE)
g3 <- ggplot(df2) +
geom_line(aes(x = x, y = abs(ydiff), colour = side)) +
geom_area(aes(x = x, y = abs(ydiff), fill = side, alpha = 0.4)) +
guides(alpha = FALSE, fill = FALSE)
## See [3]
grid.draw(rbind(ggplotGrob(g2), ggplotGrob(g3), size="last"))
... or with abs(ydiff) replaced by ydiff in the construction of the second plot:
Source: SO answer 3
Related
I'm trying to plot some nonparametric regression curves with ggplot2. I achieved It with the base plot()function:
library(KernSmooth)
set.seed(1995)
X <- runif(100, -1, 1)
G <- X[which (X > 0)]
L <- X[which (X < 0)]
u <- rnorm(100, 0 , 0.02)
Y <- -exp(-20*L^2)-exp(-20*G^2)/(X+1)+u
m <- lm(Y~X)
plot(Y~X)
abline(m, col="red")
m2 <- locpoly(X, Y, bandwidth = 0.05, degree = 0)
lines(m2$x, m2$y, col = "red")
m3 <- locpoly(X, Y, bandwidth = 0.15, degree = 0)
lines(m3$x, m3$y, col = "black")
m4 <- locpoly(X, Y, bandwidth = 0.3, degree = 0)
lines(m4$x, m4$y, col = "green")
legend("bottomright", legend = c("NW(bw=0.05)", "NW(bw=0.15)", "NW(bw=0.3)"),
lty = 1, col = c("red", "black", "green"), cex = 0.5)
With ggplot2 have achieved plotting the linear regression:
With this code:
ggplot(m, aes(x = X, y = Y)) +
geom_point(shape = 1) +
geom_smooth(method = lm, se = FALSE) +
theme(axis.line = element_line(colour = "black", size = 0.25))
But I dont't know how to add the other lines to this plot, as in the base R plot. Any suggestions? Thanks in advance.
Solution
The shortest solution (though not the most beautiful one) is to add the lines using the data= argument of the geom_line function:
ggplot(m, aes(x = X, y = Y)) +
geom_point(shape = 1) +
geom_smooth(method = lm, se = FALSE) +
theme(axis.line = element_line(colour = "black", size = 0.25)) +
geom_line(data = as.data.frame(m2), mapping = aes(x=x,y=y))
Beautiful solution
To get beautiful colors and legend, use
# Need to convert lists to data.frames, ggplot2 needs data.frames
m2 <- as.data.frame(m2)
m3 <- as.data.frame(m3)
m4 <- as.data.frame(m4)
# Colnames are used as names in ggplot legend. Theres nothing wrong in using
# column names which contain symbols or whitespace, you just have to use
# backticks, e.g. m2$`NW(bw=0.05)` if you want to work with them
colnames(m2) <- c("x","NW(bw=0.05)")
colnames(m3) <- c("x","NW(bw=0.15)")
colnames(m4) <- c("x","NW(bw=0.3)")
# To give the different kernel density estimates different colors, they must all be in one data frame.
# For merging to work, all x columns of m2-m4 must be the same!
# the merge function will automatically detec columns of same name
# (that is, x) in m2-m4 and use it to identify y values which belong
# together (to the same x value)
mm <- Reduce(x=list(m2,m3,m4), f=function(a,b) merge(a,b))
# The above line is the same as:
# mm <- merge(m2,m3)
# mm <- merge(mm,m4)
# ggplot needs data in long (tidy) format
mm <- tidyr::gather(mm, kernel, y, -x)
ggplot(m, aes(x = X, y = Y)) +
geom_point(shape = 1) +
geom_smooth(method = lm, se = FALSE) +
theme(axis.line = element_line(colour = "black", size = 0.25)) +
geom_line(data = mm, mapping = aes(x=x,y=y,color=kernel))
Solution which will settle this for everyone and for eternity
The most beautiful and reproducable way though will be to create a custom stat in ggplot2 (see the included stats in ggplot).
There is this vignette of the ggplot2 team to this topic: Extending ggplot2. I have never undertaken such a heroic endeavour though.
I am trying to create a scatterplot that is summarized by hexagon bins of counts. I would like the user to be able to define the count breaks for the color scale. I have this working, using scale_fill_manual(). Oddly, however, it only works sometimes. In the MWE below, using the given seed value, if xbins=10, there are issues resulting in a plot as follows:
However, if xbins=20 or 40, for example, the plot doesn't seem to have problems:
My MWE is as follows:
library(ggplot2)
library(hexbin)
library(RColorBrewer)
set.seed(1)
xbins <- 20
x <- abs(rnorm(10000))
y <- abs(rnorm(10000))
minVal <- min(x, y)
maxVal <- max(x, y)
maxRange <- c(minVal, maxVal)
buffer <- (maxRange[2] - maxRange[1]) / (xbins / 2)
h <- hexbin(x = x, y = y, xbins = xbins, shape = 1, IDs = TRUE,
xbnds = maxRange, ybnds = maxRange)
hexdf <- data.frame (hcell2xy(h), hexID = h#cell, counts = h#count)
my_breaks <- c(2, 4, 6, 8, 20, 1000)
clrs <- brewer.pal(length(my_breaks) + 3, "Blues")
clrs <- clrs[3:length(clrs)]
hexdf$countColor <- cut(hexdf$counts, breaks = c(0, my_breaks, Inf),
labels = rev(clrs))
ggplot(hexdf, aes(x = x, y = y, hexID = hexID, fill = countColor)) +
scale_fill_manual(values = levels(hexdf$countColor)) +
geom_hex(stat = "identity") +
geom_abline(intercept = 0, color = "red", size = 0.25) +
coord_fixed(xlim = c(-0.5, (maxRange[2] + buffer)),
ylim = c(-0.5, (maxRange[2] + buffer))) +
theme(aspect.ratio=1)
My goal is to tweak this code so that the plot does not have problems (where suddenly certain hexagons are different sizes and shapes than the rest) regardless of the value assigned to xbins. However, I am puzzled what may be causing this problem for certain xbins values. Any advice would be greatly appreciated.
EDIT:
I am updating the example code after taking into account comments by #bdemarest and #Axeman. I followed the most popular answer in the link #Axeman recommends, and believe it is more useful when you are working with scale_fill_continuous() on an integer vector. Here, I am working on scale_fill_manual() on a factor vector. As a result, I am still unable to get this goal to work. Thank you.
library(ggplot2)
library(hexbin)
library(RColorBrewer)
set.seed(1)
xbins <- 10
x <- abs(rnorm(10000))
y <- abs(rnorm(10000))
minVal <- min(x, y)
maxVal <- max(x, y)
maxRange <- c(minVal, maxVal)
buffer <- (maxRange[2] - maxRange[1]) / (xbins / 2)
bindata = data.frame(x=x,y=y,factor=as.factor(1))
h <- hexbin(bindata, xbins = xbins, IDs = TRUE, xbnds = maxRange, ybnds = maxRange)
counts <- hexTapply (h, bindata$factor, table)
counts <- t (simplify2array (counts))
counts <- melt (counts)
colnames (counts) <- c ("factor", "ID", "counts")
counts$factor =as.factor(counts$factor)
hexdf <- data.frame (hcell2xy (h), ID = h#cell)
hexdf <- merge (counts, hexdf)
my_breaks <- c(2, 4, 6, 8, 20, 1000)
clrs <- brewer.pal(length(my_breaks) + 3, "Blues")
clrs <- clrs[3:length(clrs)]
hexdf$countColor <- cut(hexdf$counts, breaks = c(0, my_breaks, Inf), labels = rev(clrs))
ggplot(hexdf, aes(x = x, y = y, fill = countColor)) +
scale_fill_manual(values = levels(hexdf$countColor)) +
geom_hex(stat = "identity") +
geom_abline(intercept = 0, color = "red", size = 0.25) +
coord_cartesian(xlim = c(-0.5, maxRange[2]+buffer), ylim = c(-0.5, maxRange[2]+ buffer)) + theme(aspect.ratio=1)
you can define colors in 'geom' instead of 'scale' that modifies the scale of plot:
ggplot(hexdf, aes(x = x, y = y)) +
geom_hex(stat = "identity",fill =hexdf$countColor)
I am making a scatter plot in R with ggplot2. I am comparing the fraction of votes Hillary and Bernie received in the primary and education level. There is a lot over overlap and way to many points. I tried to use transparency so I could see the overlap but it still looks bad.
Code:
demanalyze <- function(infocode, n = 1){
infoname <- filter(infolookup, column_name == infocode)$description
infocolumn <- as.vector(as.matrix(mydata[infocode]))
ggplot(mydata) +
aes(x = infocolumn) +
ggtitle(infoname) +
xlab(infoname) +
ylab("Fraction of votes each canidate recieved") +
xlab(infoname) +
geom_point(aes(y = sanders_vote_fraction, colour = "Bernie Sanders")) +#, color = alpha("blue",0.02), size=I(1)) +
stat_smooth(aes(y = sanders_vote_fraction), method = "lm", formula = y ~ poly(x, n), size = 1, color = "darkblue", se = F) +
geom_point(aes(y = clinton_vote_fraction, colour = "Hillary Clinton")) +#, color = alpha("red",0.02), size=I(1)) +
stat_smooth(aes(y = clinton_vote_fraction), method = "lm", formula = y ~ poly(x, n), size = 1, color = "darkred", se = F) +
scale_colour_manual("",
values = c("Bernie Sanders" = alpha("blue",0.02), "Hillary Clinton" = alpha("red",0.02))
) +
guides(colour = guide_legend(override.aes = list(alpha = 1)))
}
What could I change to make the overlap areas look less messy?
The standard way to plot a large number of points over 2 dimensions is to use 2D density plots:
With reproducible example:
x1 <- rnorm(1000, mean=10)
x2 <- rnorm(1000, mean=10)
y1 <- rnorm(1000, mean= 5)
y2 <- rnorm(1000, mean = 7)
mydat <- data.frame(xaxis=c(x1, x2), yaxis=c(y1, y2), lab=rep(c("H","B"),each=1000))
head(mydat)
library(ggplot2)
##Dots and density plots (kinda messy, but can play with alpha)
p1 <-ggplot(mydat) + geom_point(aes(x=xaxis, y = yaxis, color=lab),alpha=0.4) +
stat_density2d(aes(x=xaxis, y = yaxis, color=lab))
p1
## just density
p2 <-ggplot(mydat) + stat_density2d(aes(x=xaxis, y = yaxis, color=lab))
p2
There are many parameters to play with, so look here for the full info on the plot type in ggplot2.
Suppose I want to plot the following data:
# First set of X coordinates
x <- seq(0, 10, by = 0.2)
# Angles from 0 to 90 degrees
angles <- seq(0, 90, length.out = 10)
# Convert to radian
angles <- deg2rad(angles)
# Create an empty data frame
my.df <- data.frame()
# For each angle, populate the data frame
for (theta in angles) {
y <- sin(x + theta)
tmp <- data.frame(x = x, y = y, theta = as.factor(theta))
my.df <- rbind(my.df, tmp)
}
x1 <- seq(0, 12, by = 0.3)
y1 <- sin(x1 - 0.5)
tmp <- data.frame(x = x1, y = y1, theta = as.factor(-0.5))
my.df <- rbind(my.df, tmp)
ggplot(my.df, aes(x, y, color = theta)) + geom_line()
That gives me a nice plot:
Now I want to draw a heat map out of this data set. There are tutorials here and there that do it using geom_tile to do it.
So, let's try:
# Convert the angle values from factors to numerics
my.df$theta <- as.numeric(levels(my.df$theta))[my.df$theta]
ggplot(my.df, aes(theta, x)) + geom_tile(aes(fill = y)) + scale_fill_gradient(low = "blue", high = "red")
That does not work, and the reason is that my x coordinates do not have the same step:
x <- seq(0, 10, by = 0.2) vs x1 <- seq(0, 12, by = 0.3)
But as soon as I use the same step x1 <- seq(0, 12, by = 0.2), it works:
I real life, my data sets are not regularly spaced (these are experimental data), but I still need to display them as a heat map. How can I do?
You can use akima to interpolate the function into a form suitable for heat map plots.
library(akima)
library(ggplot2)
my.df.interp <- interp(x = my.df$theta, y = my.df$x, z = my.df$y, nx = 30, ny = 30)
my.df.interp.xyz <- as.data.frame(interp2xyz(my.df.interp))
names(my.df.interp.xyz) <- c("theta", "x", "y")
ggplot(my.df.interp.xyz, aes(x = theta, y = x, fill = y)) + geom_tile() +
scale_fill_gradient(low = "blue", high = "red")
If you wish to use a different resolution you can change the nx and ny arguments to interp.
Another way to do it with just ggplot2 is to use stat_summary_2d.
library(ggplot2)
ggplot(my.df, aes(x = theta, y = x, z = y)) + stat_summary_2d(binwidth = 0.3) +
scale_fill_gradient(low = "blue", high = "red")
I want to add shaded areas to a chart to help people understand where bad, ok, and good points can fit.
Good = x*y>=.66
Ok = x*y>=.34
Bad = x*y<.34
Generating the right sequence of data to correctly apply the curved boundaries to the chart is proving tough.
What is the most elegant way to generate the curves?
Bonus Q: How would you do this to produce non-overlapping areas so that different colours could be used?
Updates
I've managed to do in a rather hacky way the drawing of the circle segments. I updated the MRE to use the revised segMaker function.
MRE
library(ggplot2)
pts<-seq(0,1,.02)
x<-sample(pts,50,replace=TRUE)
y<-sample(pts,50,replace=TRUE)
# What function will generate correct sequence of values as these are linear?
segMaker<-function(x,by){
# Original
# data.frame(x=c(seq(0,x,by),0)
# ,y=c(seq(x,0,-by),0)
# )
zero <- data.frame(x = 0, y = 0)
rs <- seq(0, pi, by)
xc <- x * cos(rs)
yc <- x * sin(rs)
gr <- data.frame(x = xc, y = yc)
gr <- rbind(gr[gr$x >= 0, ], zero)
return(gr)
}
firstSeg <-segMaker(.34,0.02)
secondSeg <-segMaker(.66,0.02)
thirdSeg <-segMaker(1,0.02)
ggplot(data.frame(x,y),aes(x,y, colour=x*y))+
geom_point() +
geom_polygon(data=firstSeg, fill="blue", alpha=.25)+
geom_polygon(data=secondSeg, fill="blue", alpha=.25)+
geom_polygon(data=thirdSeg, fill="blue", alpha=.25)
Current & desired shadings
You can create a data frame with the boundaries between each region and then use geom_ribbon to plot it. Here's an example using the conditions you supplied (which result in boundaries that are the reciprocal function, rather than circles, but the idea is the same, whichever function you use for the boundaries):
library(ggplot2)
# Fake data
pts<-seq(0,1,.02)
set.seed(19485)
x<-sample(pts,50,replace=TRUE)
y<-sample(pts,50,replace=TRUE)
df = data.frame(x,y)
# Region boundaries
x = seq(0.001,1.1,0.01)
bounds = data.frame(x, ymin=c(-100/x, 0.34/x, 0.66/x),
ymax=c(0.34/x, 0.66/x, 100/x),
g=rep(c("Bad","OK","Good"), each=length(x)))
bounds$g = factor(bounds$g, levels=c("Bad","OK","Good"))
ggplot() +
coord_cartesian(ylim=0:1, xlim=0:1) +
geom_ribbon(data=bounds, aes(x, ymin=ymin, ymax=ymax, fill=g), colour="grey50", lwd=0.2) +
geom_point(data=df, aes(x,y), colour="grey20") +
scale_fill_manual(values=hcl(c(15, 40, 240), 100, 80)) +
#scale_fill_manual(values=hcl(c(15, 40, 240), 100, 80, alpha=0.25)) + # If you want the fill colors to be transparent
labs(fill="") +
guides(fill=guide_legend(reverse=TRUE))
For circular boundaries, assuming we want boundaries at r=1/3 and r=2/3:
# Calculate y for circle, given r and x
cy = function(r, x) {sqrt(r^2 - x^2)}
n = 200
x = unlist(lapply(c(1/3,2/3,1), function(to) seq(0, to, len=n)))
bounds = data.frame(x, ymin = c(rep(0, n),
cy(1/3, seq(0, 1/3, len=n/2)), rep(0, n/2),
cy(2/3, seq(0, 2/3, len=2*n/3)), rep(0, n/3)),
ymax = c(cy(1/3, seq(0,1/3,len=n)),
cy(2/3, seq(0,2/3,len=n)),
rep(1,n)),
g=rep(c("Bad","OK","Good"), each=n))
bounds$g = factor(bounds$g, levels=c("Bad","OK","Good"))
If you can use a github package, ggforce adds geom_arc_bar():
# devtools::install_github('thomasp85/ggforce')
library(ggplot2)
library(ggforce)
pts<-seq(0,1,.02)
x<-sample(pts,50,replace=TRUE)
y<-sample(pts,50,replace=TRUE)
arcs <- data.frame(
x0 = 0,
y0 = 0,
start = 0,
end = pi / 2,
r0 = c(0, 1/3, 2/3),
r = c(1/3, 2/3, 1),
fill = c("bad", "ok", "good")
)
ggplot() +
geom_arc_bar(data = arcs,
aes(x0 = x0, y0 = y0, start = start, end = end, r0 = r0, r = r,
fill = fill), alpha = 0.6) +
geom_point(data = data.frame(x = x, y = y),
aes(x = x, y = y))
Based on #eipi10's great answer, to do the product component (basically ends up with the same thing) I did:
library(ggplot2)
library(data.table)
set.seed(19485)
pts <- seq(0, 1, .001)
x <- sample(pts, 50, replace = TRUE)
y <- sample(pts, 50, replace = TRUE)
df <- data.frame(x,y)
myRibbon<-CJ(pts,pts)
myRibbon[,prod:=V1 * V2]
myRibbon[,cat:=ifelse(prod<=1/3,"bad",
ifelse(prod<=2/3,"ok","good"))]
myRibbon<-myRibbon[
,.(ymin=min(V2),ymax=max(V2))
,.(cat,V1)]
ggplot() +
geom_ribbon(data=myRibbon
, aes(x=V1, ymin=ymin,ymax=ymax
, group=cat, fill=cat),
colour="grey90", lwd=0.2, alpha=.5)+
geom_point(data=df, aes(x,y), colour="grey20") +
theme_minimal()
This doesn't do anything fancy but works out for each value of x, what the smallest and largest values were that could give rise to a specific banding.
If I had just wanted arcs, the use of ggforce (#GregF) would be really great- it tucks away all the complexity.