Translate screen coordinates to graph coordinates - r

tl;dr: Is there a function to get the same output as identify() or locator(), but without a mouse click (say a mouse hover position instead)?
I am generating plots, and saving them to a PNG file, and embedding them into my application. When the user interacts with the image in my application, I'd like to send those screen coordinates back to the graphics device in R to understand where the user is in the data coordinates.
I need a version of identify() or locator() that lets me pass in the mouse coordinates explicitly.
For example, is the user hovering on a point corresponding to year 2015 and birth rate 90, if they are hovering on pixel 1000, 2000?

Have a look at ?grconvertX, which with enough care should allow you
should allow you to implement something like this.
Here is an
answer
in which I used it and grconvertY() to go from plot ("user")
coordinates to normalized device ("ndc") coordinates - basically the
reverse of the operation you'll likely want to use.
– Josh O'Brien Apr 2 '15 at 17:05
I'm finding that 'dev' or device coordinates give me the exact pixel
values for 'user' coordinates, which are the values from the graph, so
going the other way around should work. It seems like the 'ndc'
coordinates are basically the same, but divided by the width of the
image in order to normalize to the range of 0 to 1.
- Neil Apr 12 '15 at 0:14

Related

Rendering highly granular and "zoomed out" data

There was a gif on the internet where someone used some sort of CAD and drew multiple vector pictures in it. On the first frame they zoom-in on a tiny dot, revealing there a whole new different vector picture just on a different scale, and then they proceed to zoom-in further on another tiny dot, revealing another detailed picture, repeating several times. here is the link to the gif
Or another similar example: imagine you have a time-series with a granularity of a millisecond per sample and you zoom out to reveal years-worth of data.
My questions are: how such a fine-detailed data, in the end, gets rendered, when a huge amount of data ends up getting aliased into a single pixel.
Do you have to go through the whole dataset to render that pixel (i.e. in case of time-series: go through million records to just average them out into 1 line or in case of CAD render whole vector picture and blur it into tiny dot), or there are certain level-of-detail optimizations that can be applied so that you don't have to do this?
If so, how do they work and where one can learn about it?
This is a very well known problem in games development. In the following I am assuming you are using a scene graph, a node-based tree of objects.
Typical solutions involve a mix of these techniques:
Level Of Detail (LOD): multiple resolutions of the same model, which are shown or hidden so that only one is "visible" at any time. When to hide and show is usually determined by the distance between camera and object, but you could also include the scale of the object as a factor. Modern 3d/CAD software will sometimes offer you automatic "simplification" of models, which can be used as the low res LOD models.
At the lowest level, you could even just use the object's bounding
box. Checking whether a bounding box is in view is only around 1-7 point checks depending on how you check. And you can utilise object parenting for transitive bounding boxes.
Clipping: if a polygon is not rendered in the view port at all, no need to render it. In the GIF you posted, when the camera zooms in on a new scene, what is left from the larger model is a single polygon in the background.
Re-scaling of world coordinates: as you zoom in, the coordinates for vertices become sub-zero floating point numbers. Given you want all coordinates as precise as possible and given modern CPUs can only handle floats with 64 bits precision (and often use only 32 for better performance), it's a good idea to reset the scaling of the visible objects. What I mean by that is that as your camera zooms in to say 1/1000 of the previous view, you can scale up the bigger objects by a factor of 1000, and at the same time adjust the camera position and focal length. Any newly attached small model would use its original scale, thus preserving its precision.
This transition would be invisible to the viewer, but allows you to stay within well-defined 3d coordinates while being able to zoom in infinitely.
On a higher level: As you zoom into something and the camera gets closer to an object, it appears as if the world grows bigger relative to the view. While normally the camera space is moving and the world gets multiplied by the camera's matrix, the same effect can be achieved by changing the world coordinates instead of the camera.
First, you can use caching. With tiles, like it's done in cartography. You'll still need to go over all the points, but after that you'll be able zoom-in/zoom-out quite rapidly.
But if you don't have extra memory for cache (not so much actually, much less than the data itself), or don't have time to go over all the points you can use probabilistic approach.
It can be as simple as peeking only every other point (or every 10th point or whatever suits you). It yields decent results for some data. Again in cartography it works quite well for shorelines, but not so well for houses or administrative boarders - anything with a lot of straight lines.
Or you can take a more hardcore probabilistic approach: randomly peek some points, and if, for example, there're 100 data points that hit pixel one and only 50 hit pixel two, then you can more or less safely assume that if you'll continue to peek points still pixel one will be twice as likely to be hit that pixel two. So you can just give up and draw pixel one with a twice more heavy color.
Also consider how much data you can and want to put in a pixel. If you'll draw a pixel in black and white, then there're only 256 variants of color. And you don't need to be more precise. Or if you're going to draw a pixel in full color then you still need to ask yourself: will anyone notice the difference between something like rgb(123,12,54) and rgb(123,11,54)?

How to get Bokeh to scale scatter plot size according to zoom

Some of the folks on my team, including myself, find it pretty disorienting that in a Bokeh scatter plot, say using the circle method, that for an initial autoscale fit of the data on the figure we can dial in a reasonable size for our data, using for example something like plot.circle( x , y , size=3 )
However when we interactively zoom into our data the glyph sizes as displayed are invariant to the zoom. Is there a way to have them scale proportionally to the zoom we've dialed into? Something akin to an vector graphics interaction (eg svg). If memory serves me right matlab figures and matplotlib figures should maintain zoom proportionality behavior. To demonstrate the behavior we're seeing consider the first image and the red box I approximately zoom into on the second image.
Just as a quick demo using Powerpoint to illustrate the sort of desired behavior...
For circles, set the radius kwarg instead of the size value. (There similar, glyph-specific values for the other glyph-types).
i.e.:
plot.circle(x=[1,2,3], y=[1,2,3], radius=0.5)
size is always rendered in screen coordinates (pixels), but radius and the related properties are computed in data coordinates and should change in magnitude with zooming.
Here's a good demo by Bryan Van de Ven showing the difference between pixel coordinates (size) and data coordinates (radius) given in this conference talk:
Intro to Data Visualization with Bokeh - Part 2 - Strata Hadoop San Jose 2016
... the point is all of these attributes can be vectorized. We could
for instance say size equals you know 2, 4, 6, 8, 10, and now the size
is modulated right. So we have one that has size 2 and one that has
size 4. Size is usually in pixels, radius is usually in data dimension
units. But all the other ones here as well all the colors, all the
visual attributes can be vectorized in this way. You can either give
them a single value as we've done for instance with the line fill
color, or you can give them a vector of values in which case all of
the things are different.
So next exercise here you go to this
notebook this is that second notebook "02 - plotting" it is to try to
create the same example but now set the radius instead of the size and
sort of see what's the difference if you set if you set radius instead
of size.

How to resize an existing point cloud file?

I am trying to enlarge a point cloud data set. Suppose I have a point cloud data set consisting of 100 points & I want to enlarge it to say 5 times. Actually I am studying some specific structure which is very small, so I want to zoom in & do some computations. I want something like imresize() in Matlab.
Is there any function to do this? What does resize() function do in PCL? Any idea about how can I do it?
Why would you need this? Points are just numbers, regardless whether they are 1 or 100, until all of them are on the same scale and in the same coordinate system. Their size on the screen is just a visual representation, you can zoom in and out as you wish.
You want them to be a thousandth of their original value (eg. millimeters -> meters change)? Divide them by 1000.
You want them spread out in a 5 times larger space in that particular coordinate system? Multiply their coordinates with 5. But even so, their visual representations will look exactly the same on the screen. The data remains basically the same, they will not be resized per se, they numeric representation will change a bit. It is the simplest affine transform, just a single multiplication.
You want to have finer or coarser resolution of your numeric representation? Or have different range? Change your data type accordingly.
That is, if you deal with a single set.
If you deal with different sets, say, recorded with different kinds of sensors and the numeric representations differ a bit (there are angles between the coordinate systems, mm vs cm scale, etc.) you just have to find the transformation from one coordinate system to the other one and apply it to the first one.
Since you want to increase the number of points while preserving shape/structure of the cloud, I think you want to do something like 'upsampling'.
Here is another SO question on this.
The PCL offers a class for bilateral upsampling.
And as always google gives you a lot of hints on this topic.
Beside (what Ziker mentioned) increasing allocated memory (that's not what you want, right?) or zooming in in visualization you could just rescale your point cloud.
This can be done by multiplying each points dimensions with a constant factor or using an affine transformation. So you can e.g switch from mm to m.
If i understand your question correctly
If you have defined your cloud like this
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
in fact you can do resize
cloud->points.resize (cloud->width * cloud->height);
Note that doing resize does nothing more than allocate more memory for variable thus after resizing original data remain in cloud. So if you want to have empty resized cloud dont forget to add cloud->clear();
If you just want zoom some pcd for visual puposes(i.e you cant see what is shape of cloud because its too small) why dont you use PCL Visualization and zoom by scrolling up/down

Augmented Reality Demo

I'm trying to build an Augmented Reality Demonstration, like this iPhone App:
http://www.acrossair.com/acrossair_app_augmented_reality_nearesttube_london_for_iPhone_3GS.htm
However my geometry/math is a bit rusty nowadays.
This is what I know:
If i have my Android phone on the landscape mode (with the home button on the left), my z axis points to the direction I'm looking.
From the sensors of my phone i know what is the angle my z axis has with the North axis, let's call this angle theta.
If I have a vector from my current position to the point I want to show in my screen, i can calculate the angle this vector does with my z axis. Let's call this angle alpha.
So, based on the alpha angle I have a perception of where the point is, and I'm able to show it in the screen (like the Nearest Tube App).
This is the basic theory of a simple demonstration (of course it's nothing like the App, but it's the first step).
Can someone give me some lights on this matter?
[Update]
I've found this very interesting example, however I need to have the movement on both xx and yy axis. Any hints?
The basics are easy. You need the angle between your location and your destiny (arctangent), and the heading (from the digital compass in your phone). See this answer: Augmented Reality movement There is some objective-c code down there that you can read if you come from java.
What you want is a 3d-Space-Filling-Curve for example a hilbert-curve. That is a spatial index over 3 ccordinate. It is comparable to a octree. You want to store the object in that octree and do a depth-firat search on the coordinate you have recorded with your iphone as fixed coordinate probably the center of the screen. A octree subdivde the space continously in eigth directions and a 3d-Space-Filling-Curve is an hamiltonian path through the space which is like a fracta but it is clearly distinctable from the region of the octree. I use 2d-hilbert-curve to speed search in geospatial databases. Maybe you want to start with this first?

Implementing z-axis in a 2D side-scroller

I'm making a side scroller similar to Castle Crashers and right now I'm using SAT for collision detection. That works great, but I want to simulate level "depth" by allowing objects to move up and down on the screen, basically along a z-axis (like this screenshot http://favoniangamers.files.wordpress.com/2009/07/castle-crashers-ps3.jpg). This isn't an isometric game, but rather uses parallax scrolling.
I added a z component to my vector class, and I plan to cull collisions based on the 'thickness' of a shape and it's z position. I'm just not sure how calculate the positions of shapes for rendering or how to add jumping with gravity. How do I calculate the max y value (for the ground) as the z position changes? Basically it's the relationship of the z and y axis that confuses me.
I'd appreciate links to resources if anyone knows of this topic.
Thanks!
It's actually possible to make your collision detection algorithm dimensionally agnostic. Just have a collision detector that works along one dimension, use that to check each dimension, and your answer to "are these colliding or not" is the logical AND of the collision detection along each of the dimensions.
Your game should be organised to keep the interaction of game objects, and the rendering of the game to the screen completely seperate. You can think of these two sections of the program as the "model" and the "view". In the model, you have a full 3D world, with 3 axes. You can't go halvesies on this point without some level of pain. Your model must be proper 3D.
The view will read the location of all the game objects, and project them onto the screen using the camera definition. For this part you don't need a full 3D rendering engine. The correct technical term for the perspective you're talking about is "oblique", and it can be seen in many ancient chinese and japanese scroll paintings and prints- in particular look for images of "The Tale of Genji".
The on screen position of an object (including the ground surface!) goes something like this:
DEPTH_RATIO=0.5;
view_x=model_x-model_z*DEPTH_RATIO-camera_x;
view_y=model_y+model_z*DEPTH_RATIO-camera_y;
you can modify for a straight orthographic front projection:
DEPTH_RATIO=0.5;
view_x=model_x-camera_x;
view_y=model_y+model_z*DEPTH_RATIO-camera_y;
And of course don't forget to cull objects outside the volume defined by the camera.
You can also use this mechanism to handle the positioning of parallax layers for you. This is of course, a matter changing your camera to a 1-point perspective projection instead of an orthographic projection. You don't have to use this to change the rendered size of your sprites, but it will help you manage the x position of objects realistically. if you're up for a challenge, you could even mix projections- use 1 point perspective for deep backgrounds, and the orthographic stuff for the foreground.
You should separate your conceptual Y axis used by you physics calculation (collision detection etc.) and the Y axis you actually draw on the screen. That way it becomes less confusing.
Just do calculations per normal pretending there is no relationship between Y and Z axis then when you actually draw the object on the screen you simulate the Z axis using the Y axis:
screen_Y = Y + Z/some_fudge_factor;
Actually, this is how real 3d engines work. After all the world calculations are done the X, Y and Z coordinates are mapped onto screen_X and screen_Y via a function (usually a bit more complicated than the equation above, but just a bit).
For example, to implement pseudo-isormetric view in your game you can even apply Z to the screen_X axis so objects are displaced diagonally instead of vertically.

Resources