Is it possible to scale two.js groups in one direction - two.js

Two.js seems to only support a single value for a scale, not x,y components. Is it possible to just stretch something horizontally?

Yes, under the hood every Two.Group and Two.Polygon has a _matrix object. You can set _matrix.manual and then do a number of other transformations that you can't do with the typical two.js API. Check out this example for a demonstration.

Related

How to make your graph wider in Dot?

I have a simple graph created with dot which represents simple neural network.
I want to make this graph wider, i.e. make more space between layers by elongating edges. I tried to do it with size and ratio attributes but without success. Ratio works for height, but I want to increase width.
In case anyone needs this later, I have solved my problem with variable ranksep.
Have you tried the nodesep variable?
GraphViz documentation
From the documentation it says "In dot, this specifies the minimum space between two adjacent nodes in the same rank, in inches." So depending on how you have your ranks set up, this might help you. The the look of your graph (lacking the .gv file), I'd guess that you're using invisible top-to-bottom ranks to align the vertical columns. If this, the nodesep variable may work well for you. The default is quite small, 0.25 inch.

Dicom - normalization and standardization

I am new to the field of medical imaging - and trying to solve this (potentially basic problem). For a machine learning purpose, I am trying to standardize and normalize a library of DICOM images, to ensure that all images have the same rotation and are at the same scale (e.g. in mm). I have been playing around with the Mango viewer, and understand that one can create transformation matrices that might be helpful in this regard. I have however the following basic questions:
I would have thought that a scaling of the image would have changed the pixel spacing in the image header. Does this tag not provide the distance between pixels, and should this not change as a result of scaling?
What is the easiest way to standardize a library of images (ideally in python)? Is it possible and should one extract a mean pixel spacing across all images, and then scaling all images to match that mean? or is there a smarter way to ensure consistency in scaling and rotation?
Many thanks in advance, W
Does this tag not provide the distance between pixels, and should this
not change as a result of scaling?
Think of the image voxels as fixed units of space, which are sampling your image. When you apply your transform, you are translating/rotating/scaling your image around within these fixed units of space. That is, the size and shape of the voxels doesn't change. They just sample different parts of your image.
You can resample your image by making your voxels bigger or smaller or changing their shape (pixel spacing), but this can be independent of the transform you are applying to the image.
What is the easiest way to standardize a library of images (ideally in
python)?
One option is FSL-FLIRT, although it only accepts data in NIFTI format, so you'd have to convert your DICOMs to NIFTI. There is also this Python interface to FSL.
Is it possible and should one extract a mean pixel spacing across all
images, and then scaling all images to match that mean? or is there a
smarter way to ensure consistency in scaling and rotation?
I think you'd just to have pick a reference image to register all your other images too. There's no right answer: picking the highest resolution image/voxel dimensions or an average or some resampling into some other set of dimensions all sound reasonable.

How to resize an existing point cloud file?

I am trying to enlarge a point cloud data set. Suppose I have a point cloud data set consisting of 100 points & I want to enlarge it to say 5 times. Actually I am studying some specific structure which is very small, so I want to zoom in & do some computations. I want something like imresize() in Matlab.
Is there any function to do this? What does resize() function do in PCL? Any idea about how can I do it?
Why would you need this? Points are just numbers, regardless whether they are 1 or 100, until all of them are on the same scale and in the same coordinate system. Their size on the screen is just a visual representation, you can zoom in and out as you wish.
You want them to be a thousandth of their original value (eg. millimeters -> meters change)? Divide them by 1000.
You want them spread out in a 5 times larger space in that particular coordinate system? Multiply their coordinates with 5. But even so, their visual representations will look exactly the same on the screen. The data remains basically the same, they will not be resized per se, they numeric representation will change a bit. It is the simplest affine transform, just a single multiplication.
You want to have finer or coarser resolution of your numeric representation? Or have different range? Change your data type accordingly.
That is, if you deal with a single set.
If you deal with different sets, say, recorded with different kinds of sensors and the numeric representations differ a bit (there are angles between the coordinate systems, mm vs cm scale, etc.) you just have to find the transformation from one coordinate system to the other one and apply it to the first one.
Since you want to increase the number of points while preserving shape/structure of the cloud, I think you want to do something like 'upsampling'.
Here is another SO question on this.
The PCL offers a class for bilateral upsampling.
And as always google gives you a lot of hints on this topic.
Beside (what Ziker mentioned) increasing allocated memory (that's not what you want, right?) or zooming in in visualization you could just rescale your point cloud.
This can be done by multiplying each points dimensions with a constant factor or using an affine transformation. So you can e.g switch from mm to m.
If i understand your question correctly
If you have defined your cloud like this
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
in fact you can do resize
cloud->points.resize (cloud->width * cloud->height);
Note that doing resize does nothing more than allocate more memory for variable thus after resizing original data remain in cloud. So if you want to have empty resized cloud dont forget to add cloud->clear();
If you just want zoom some pcd for visual puposes(i.e you cant see what is shape of cloud because its too small) why dont you use PCL Visualization and zoom by scrolling up/down

Automatically extract data from graph

I have a graph like:
I would like to generate a set of (x,y) pairs that correspond to points of this graph.
Maybe one for each horizontal pixel.
How would I go about doing this?
If I had the image in uncompressed bitmap format, maybe cropped to the actual graph, I could examine each vertical strip for the blackest point...
I would prefer to work in Python, but I'm interested in any technique.
I answered a question like this a while back. It should be fairly easy to detect the grid, from there you can get the pixel's coordinates relatively to the grid. However, it wasn't clear how to extract the numbers, which you need to do in order to get the the scale of the grid. Although, it might be possible fairly easily if you can match the font and font size (which might be possible via scaling). Otherwise, you'd have to enter the numbers manually.
To extract the grid, you'd start from the top right and move diagonally until you find the start of the grid. From there you can follow the vertical and horizontal lines (of the grid) until they end. This should allow you to say with fairly high probability where the outer rectangle of the grid is and what the x and y intervals of the grid are in terms of pixels. The blackest parts within the grid should do for finding the curve, but it may require some interpolation depending on how many data points you need/want.
It also may be useful to look into techniques for reversing anti-aliasing effects. Although, the uncompressed bitmap image may not need it.

Scalling connected lines

I have some kind of a shape consisting of vertical, horizontal and diagonal lines. I have starting X,Y and ending X,Y (this is my input - just 2 points defining a line) of each line and I would like to make the whole shape scalable (just by changing the value of a scale ratio variable), so that I can still preserve the proper connection of the lines and the proportions as well. Just for getting a better idea of what I mean: it'd be as if I had the same lines in a vector editor.
Would that be possible with an algorithm, and could you please, give me another possible solution if there is no such algorithm ?
Thank you very much in advance!
what point do you want it to scale about? You could scale relative to the first point, the center, or some other arbitrary location. Typically, you subtract out an offset (for instance the first point in your input), multiply by a scale factor, and then add back the offset.
A more systematic approach in computer graphics would be to use a transformation matrix... although thats probably overkill in your case.

Resources