Scheme equivalence relation - math

I need help defining a Scheme function that takes a partition (list of lists) and returns a list of pairs that represents an equivalence relation. I've started writing some code but I'm realizing I'm going in the wrong direction. I've been looking at this for hours with no progress.
(define partition
(lambda (piv l p1 p2)
(if (null? l)
(list p1 p2)
(if (< (car l) piv)
(partition piv (cdr l) (cons (car l) p1) p2)
(partition piv (cdr l) p1 (cons (car l) p2))))))
However, the function needs to work in a way such that (partition ’((3 4) (5))) return ((3 3) (3 4) (4 3) (4 4) (5 5))
Any help would be greatly appreciated

Another example would be helpful. Going with the assumption that all the elements of a member list are equivalent to each other, this might suffice:
(define (partition lol) ; lol, list of lists
(apply append
(map
(lambda (liszt)
(apply append (map
(lambda (elem)
(map
(lambda (other)
(list elem other))
liszt))
liszt)))
lol)))

Related

Rewriting a common function using tail-end recursion

I've been trying to tinker with this code to rewrite a "repeat" function using tail-end recursion but have gotten a bit stuck in my attempts.
(define (repeat n x)
(if (= n 0)
'()
(cons x (repeat (- n 1) x))))
This is the original "repeat" function. It traverses through 'n - 1' levels of recursion then appends 'x' into a list in 'n' additional recursive calls. Instead of that, the recursive call should be made and the 'x' should be appended to a list at the same time.
(define (repeat-tco n x)
(trace-let rec ([i 0]
[acc '()])
(if (= i n)
acc
(rec (+ i 1) (cons x acc)))))
This is the closest rewritten version that I've come up with which I believe follows tail-call recursion but I'm not completely sure.
Your repeat-tco function is indeed tail recursive: it is so because the recursive call to rec is in 'tail position': at the point where it's called, the function that is calling it has nothing left to do but return the value of that call.
[The following is just some perhaps useful things: the answer is above, but an answer which was essentially 'yes' seemed too short.]
This trick of taking a procedure p which accumulates some result via, say (cons ... (p ...)) and turning it into a procedure with an extra 'accumulator' argument which is then tail recursive is very common. A result of using this technique is that the results come out backwards: this doesn't matter for you because all the elements of your list are the same, but imagine this:
(define (evens/backwards l)
(let loop ([lt l]
[es '()])
(if (null? lt)
es
(loop (rest lt)
(if (even? (first lt))
(cons (first lt) es)
es)))))
This will return the even elements of its arguments, but backwards. If you want them the right way around, a terrible answer is
(define (evens/terrible l)
(let loop ([lt l]
[es '()])
(if (null? lt)
es
(loop (rest lt)
(if (even? (first lt))
(append es (list (first lt)))
es)))))
(Why is it a terrible answer?) The proper answer is
(define (evens l)
(let loop ([lt l]
[es '()])
(if (null? lt)
(reverse es)
(loop (rest lt)
(if (even? (first lt))
(cons (first lt) es)
es)))))

Scheme error says "attempt to apply non-procedure" when flipping tuples in a list

I'm working through a textbook on programming languages, and one of the exercises was to make a function in Scheme that flips tuples in a list. Here's my code:
; invert : Listof(List(Int,Int)) -> Listof(List(Int,int))
; usage: (invert '((a 1) (a 2) (1 b) (2 b))) -> ((1 a) (2 a) (b 1) (b 2))
(define invert
(lambda (lst)
(if (null? lst)
'()
(cons
(flip (car lst))
(invert (cdr lst))))))
; flip : List(Int,Int) -> List(Int,int)
; usage: (flip '(a 1)) -> (1 a)
(define flip
(lambda (tuple)
(if (not (eqv? (length (tuple)) 2))
(eopl:error 'flip
"Tuple is not length 2~%")
(cons (cdr tuple) (car tuple)))))
I tried testing my program in chez-scheme. When I use the test case in the usage comment, I get this error: Exception: attempt to apply non-procedure (a 1). I've never worked with Scheme before, so I'd greatly appreciate any help and advice. Thanks!
You have a coupe of errors in flip, this should fix them:
(define flip
(lambda (tuple)
(if (not (= (length tuple) 2))
(eopl:error 'flip "Tuple is not length 2~%")
(list (cadr tuple) (car tuple)))))
In particular:
The specific error reported was because of this expression: (tuple). We must not surround variables with (), unless they're procedures that we intend to call.
We should use = for comparing numbers, not eqv?.
In this expression: (cons (cdr tuple) (car tuple)) there are two issues, for building a list of two elements we use list, not cons. And for accessing the second element we use cadr, not cdr - you should read a bit about how cons, car and cdr are used for building lists.
Notice that there's a simpler way to solve this problem if we use map; I'll skip error checking for simplicity:
(define (invert lst)
(map (lambda (tuple) (list (cadr tuple) (car tuple)))
lst))

(Scheme) Using the map function, how do you find the sum of the sublists of a list?

So, I'm trying to add up the sublists of a list. Like, if I have something like this:
(add-pair '((1 4) (2 1)))
I want it to return this:
(5 3)
This is what I have so far:
(define pair-additions
(lambda (ls)
(map
(lambda (n)
(+ (car n) (cdr n)))ls)))
Right now, it's giving me an error saying that the input isn't a number. Can anybody help me out?
You almost got it! here is the problem:
(+ (car n) (cdr n))
For retrieving the second element of a list, you have to take the car of the cdr, not just the cdr. Change the above line for this:
(+ (car n) (car (cdr n)))
Or for this, which is a short form of the previous line:
(+ (car n) (cadr n))
Or for this, which is easier to read (if supported by your Scheme interpreter):
(+ (first n) (second n))
All the above are equivalent.

Sum of values in a list squared in Scheme

I'm trying to have the following program work, but for some reason it keeps telling me that my input doesnt contain the correct amount of arguments, why? here is the program
(define (sum f lst)
(cond
((null? lst)
0)
((pair? (car lst))
(+(f(sum (f car lst))) (f(sum (f cdr lst)))))
(else
(+ (f(car lst)) (f(sum (f cdr lst)))))))
and here is my input: (sum (lambda (x) (* x x)) '(1 2 3))
Thanks!
btw I take no credit for the code, Im just having fun with this one (http://groups.engin.umd.umich.edu/CIS/course.des/cis400/scheme/listsum.htm)
You're indeed passing the wrong number of arguments to the procedures sum and f, notice that the expressions (sum (f car lst)), (sum (f cdr lst)) are wrong, surely you meant (sum f (car lst)), (sum f (cdr lst)) - you don't want to apply f (a single-parameter procedure) to the two parameters that you're passing, and sum expects two arguments, but only one is passed. Try this instead:
(define (sum f lst)
(cond ((null? lst)
0)
((pair? (car lst))
(+ (sum f (car lst)) (sum f (cdr lst))))
(else
(+ (f (car lst)) (sum f (cdr lst))))))
More important: you're calling the f procedure in the wrong places. Only one call is needed in the last line, for the case when (car lst) is just a number and not a list - in the other places, both (car lst) and (cdr lst) are lists that need to be traversed; simply pass f around as a parameter taking care of correctly advancing the recursion.
Let's try the corrected procedure with a more interesting input - as it is, the procedure is capable of finding the sum of a list of arbitrarily nested lists:
(sum (lambda (x) (* x x)) '(1 (2) (3 (4)) 5))
> 55
You should take a look at either The Little Schemer or How to Design Programs, both books will teach you how to structure the solution for this kind of recursive problems over lists of lists.

Scheme / Racket Best Practice - Recursion vs Variable Accumulation

I'm new to Scheme (via Racket) and (to a lesser extent) functional programming, and could use some advise on the pros and cons of accumulation via variables vs recursion. For the purposes of this example, I'm trying to calculate a moving average. So, for a list '(1 2 3 4 5), the 3 period moving average would be '(1 2 2 3 4). The idea is that any numbers before the period are not yet part of the calculation, and once we reach the period length in the set, we start averaging the subset of the list according the chosen period.
So, my first attempt looked something like this:
(define (avg lst)
(cond
[(null? lst) '()]
[(/ (apply + lst) (length lst))]))
(define (make-averager period)
(let ([prev '()])
(lambda (i)
(set! prev (cons i prev))
(cond
[(< (length prev) period) i]
[else (avg (take prev period))]))))
(map (make-averager 3) '(1 2 3 4 5))
> '(1 2 2 3 4)
This works. And I like the use of map. It seems composible and open to refactoring. I could see in the future having cousins like:
(map (make-bollinger 5) '(1 2 3 4 5))
(map (make-std-deviation 2) '(1 2 3 4 5))
etc.
But, it's not in the spirit of Scheme (right?) because I'm accumulating with side effects. So I rewrote it to look like this:
(define (moving-average l period)
(let loop ([l l] [acc '()])
(if (null? l)
l
(let* ([acc (cons (car l) acc)]
[next
(cond
[(< (length acc) period) (car acc)]
[else (avg (take acc period))])])
(cons next (loop (cdr l) acc))))))
(moving-average '(1 2 3 4 5) 3)
> '(1 2 2 3 4)
Now, this version is more difficult to grok at first glance. So I have a couple questions:
Is there a more elegant way to express the recursive version using some of the built in iteration constructs of racket (like for/fold)? Is it even tail recursive as written?
Is there any way to write the first version without the use of an accumulator variable?
Is this type of problem part of a larger pattern for which there are accepted best practices, especially in Scheme?
It's a little strange to me that you're starting before the first of the list but stopping sharply at the end of it. That is, you're taking the first element by itself and the first two elements by themselves, but you don't do the same for the last element or the last two elements.
That's somewhat orthogonal to the solution for the problem. I don't think the accumulator is making your life any easier here, and I would write the solution without it:
#lang racket
(require rackunit)
;; given a list of numbers and a period,
;; return a list of the averages of all
;; consecutive sequences of 'period'
;; numbers taken from the list.
(define ((moving-average period) l)
(cond [(< (length l) period) empty]
[else (cons (mean (take l period))
((moving-average period) (rest l)))]))
;; compute the mean of a list of numbers
(define (mean l)
(/ (apply + l) (length l)))
(check-equal? (mean '(4 4 1)) 3)
(check-equal? ((moving-average 3) '(1 3 2 7 6)) '(2 4 5))
Well, as a general rule, you want to separate the manner in which you recurse and/or iterate from the content of the iteration steps. You mention fold in your question, and this points in the right step: you want some form of higher-order function that will handle the list traversal mechanics, and call a function you supply with the values in the window.
I cooked this up in three minutes; it's probably wrong in many ways, but it should give you an idea:
;;;
;;; Traverse a list from left to right and call fn with the "windows"
;;; of the list. fn will be called like this:
;;;
;;; (fn prev cur next accum)
;;;
;;; where cur is the "current" element, prev and next are the
;;; predecessor and successor of cur, and accum either init or the
;;; accumulated result from the preceeding call to fn (like
;;; fold-left).
;;;
;;; The left-edge and right-edge arguments specify the values to use
;;; as the predecessor of the first element of the list and the
;;; successor of the last.
;;;
;;; If the list is empty, returns init.
;;;
(define (windowed-traversal fn left-end right-end init list)
(if (null? list)
init
(windowed-traversal fn
(car list)
right-end
(fn left-end
(car list)
(if (null? (cdr list))
right-end
(second list))
init)
(cdr list))))
(define (moving-average list)
(reverse!
(windowed-traversal (lambda (prev cur next list-accum)
(cons (avg (filter true? (list prev cur next)))
list-accum))
#f
#f
'()
list)))
Alternately, you could define a function that converts a list into n-element windows and then map average over the windows.
(define (partition lst default size)
(define (iter lst len result)
(if (< len 3)
(reverse result)
(iter (rest lst)
(- len 1)
(cons (take lst 3) result))))
(iter (cons default (cons default lst))
(+ (length lst) 2)
empty))
(define (avg lst)
(cond
[(null? lst) 0]
[(/ (apply + lst) (length lst))]))
(map avg (partition (list 1 2 3 4 5) 0 3))
Also notice that the partition function is tail-recursive, so it doesn't eat up stack space -- this is the point of result and the reverse call. I explicitly keep track of the length of the list to avoid either repeatedly calling length (which would lead to O(N^2) runtime) or hacking together a at-least-size-3 function. If you don't care about tail recursion, the following variant of partition should work:
(define (partition lst default size)
(define (iter lst len)
(if (< len 3)
empty
(cons (take lst 3)
(iter (rest lst)
(- len 1)))))
(iter (cons default (cons default lst))
(+ (length lst) 2)))
Final comment - using '() as the default value for an empty list could be dangerous if you don't explicitly check for it. If your numbers are greater than 0, 0 (or -1) would probably work better as a default value - they won't kill whatever code is using the value, but are easy to check for and can't appear as a legitimate average

Resources