Non Decreasing Number Combinations (Interval) - functional-programming

So my problem is the following:
Given a number X of size and an A (1st number), B(Last number) interval, I have to find the number of all different kind of non decreasing combinations (increasing or null combinations) that I can build.
Example:
Input: "2 9 11"
X = 2 | A = 9 | B = 11
Output: 8
Possible Combinations ->
[9],[9,9],[9,10],[9,11],[10,10],[10,11],[11,11],[10],[11].
Now, If it was the same input, but with a different X, line X = 4, this would change a lot...
[9],[9,9],[9,9,9],[9,9,9,9],[9,9,9,10],[9,9,9,11],[9,9,10,10]...

Your problem can be reformulated to simplify to just two parameters
X and N = B - A + 1 to give you sequences starting with 0 instead of A.
If you wanted exactly X numbers in each item, it is simple combination with repetition and the equation for that would be
x_of_n = (N + X - 1)! / ((N - 1)! * X!)
so for your first example it would be
X = 2
N = 11 - 9 + 1 = 3
x_of_n = 4! / (2! * 2!) = 4*3*2 / 2*2 = 6
to this you need to add the same with X = 1 to get x_of_n = 3, so you get the required total 9.
I am not aware of simple equation for the required output, but when you expand all the equations to one sum, there is a nice recursive sequence, where you compute next (N,X) from (N,X-1) and sum all the elements:
S[0] = N
S[1] = S[0] * (N + 1) / 2
S[2] = S[1] * (N + 2) / 3
...
S[X-1] = S[X-2] * (N + X - 1) / X
so for the second example you give we have
X = 4, N = 3
S[0] = 3
S[1] = 3 * 4 / 2 = 6
S[2] = 6 * 5 / 3 = 10
S[3] = 10 * 6 / 4 = 15
output = sum(S) = 3 + 6 + 10 + 15 = 34
so you can try the code here:
function count(x, a, b) {
var i,
n = b - a + 1,
s = 1,
total = 0;
for (i = 0; i < x; i += 1) {
s *= (n + i) / (i + 1); // beware rounding!
total += s;
}
return total;
}
console.log(count(2, 9, 11)); // 9
console.log(count(4, 9, 11)); // 34
Update: If you use a language with int types (JS has only double),
you need to use s = s * (n + i) / (i + 1) instead of *= operator to avoid temporary fractional number and subsequent rounding problems.
Update 2: For a more functional version, you can use a recursive definition
function count(x, n) {
return n < 1 || x < 1 ? 0 : 1 + count(n - 1, x) + count(n, x - 1);
}
where n = b - a + 1

Related

How can I find the index position of the center of a nxn

I would like to get the index of the center position of matrix. Is there any expression that can do this?
As n is odd, you can find the specified position by mat[n/2][n/2]. Now, to find the row index of the position by f(n) = n * (n - 1) / 2 + (n + 1) / 2 = n^2 / 2 - n/2 + n/2 + 1/2 = (n^2 + 1)/2.
For example, f(3) = 3 * 1 + 2 = 5, f(5) = 5 * 2 + 3 = 13, and f(7) = 7 * 3 + 4 = 25.

Run Time Estimate/Big O Notation for Nested For Loop

I'm having trouble understanding the meaning of a function f(x) representing the number of operations performed in some code.
int sum = 0; // + 1
for (int i = 0; i < n; i++)
for (int j = 1; j <= i; j++)
sum = sum + 1; // n * (n + 1) / 2
(Please note that there is no 2 in the numerator on that last comment, but there is in the function below.)
Then my notes say that f(x) = 2n(n + 1) / 2 + 1 = O(n^2)
I understand that because there are two for loops, that whatever f(x) is, it will be = O(n^2), but why is the time estimate what it is? How does the j<= i give you n*(n+1)? What about the 2 in the denominator?
Think about, across the entire execution of this code, how many times the inner loop will run. Notice that
when i = 0, it runs zero times;
when i = 1, it runs one time;
when i = 2, it runs two times;
when i = 3, it runs three times;
...; and
when i = n - 1, it runs n - 1 times.
This means that the total number of times the innermost loop runs is given by
0 + 1 + 2 + 3 + 4 + ... + (n - 1)
This is a famous summation and it solves to
0 + 1 + 2 + 3 + 4 + ... + (n - 1) = n(n - 1) / 2
This is the n - 1st triangular number and it's worth committing this to memory.
The number given - n(n + 1) / 2 - seems to be incorrect, but it's pretty close to the true number. I think they assumed the loop would run 1 + 2 + 3 + ... + n times rather than 0 + 1 + 2 + ... + n - 1 times.
From this it's a bit easier to see where the O(n2) term comes from. Notice that n(n - 1) / 2 = n2 / 2 - n / 2, so in big-O land where we drop constants and low-order terms we're left with n2.

QBasic - How to find this value?

If we have M as follows:
M = 1+2+3+5+6+7+9+10+11+13+...+n
What would be the QBasic program to find M.
I have done the following so far, but is not returning me the expected value
INPUT "ENTER A VALUE FOR N"
SUM = 0
FOR I = 1 TO N
IF I MOD 4 = 0
SUM = SUM + I
NECT I
How should I go about this?
Thanks.
You have mixed the equality operator. Try this:
INPUT "ENTER A VALUE FOR N"
SUM = 0
FOR I = 1 TO N
IF I MOD 4 <> 0
SUM = SUM + I
NEXT I
No need to write a program, or at least no need to use loops.
Sum of first n natural numbers:
sum_1 = n * (n + 1) / 2
Sum of multiples of 4 < n:
sum_2 = 4 * (n / 4) * (n / 4 + 1) / 2 = 2 * (n / 4) * (n / 4 + 1)
The result is sum_1 - sum_2:
sum = sum_1 - sum_2 = n * (n + 1) / 2 - 2 * (n / 4) * (n / 4 + 1)
NB: / = integer division
This snip calculates the sum of integers to n skipping values divisible by 4.
PRINT "Enter upper value";
INPUT n
' calculate sum of all values
FOR l = 1 TO n
x = x + l
NEXT
' remove values divisible by 4
FOR l = 0 TO n STEP 4
x = x - l
NEXT
PRINT "Solution is:"; x

When will this Recurrence Relation repeat

I have this recurrence formula:
P(n) = ( P(n-1) + 2^(n/2) ) % (X)
s.t. P(1) = 2;
where n/2 is computer integer division i.e. floor of x/2
Since i am taking mod X, this relation should repeat at least with in X outputs.
but it can start repeating before that.
How to find this value?
It needn't repeat within x terms, consider x = 3:
P(1) = 2
P(2) = (P(1) + 2^(2/2)) % 3 = 4 % 3 = 1
P(3) = (P(2) + 2^(3/2)) % 3 = (1 + 2) % 3 = 0
P(4) = (P(3) + 2^(4/2)) % 3 = 4 % 3 = 1
P(5) = (P(4) + 2^(5/2)) % 3 = (1 + 4) % 3 = 2
P(6) = (P(5) + 2^(6/2)) % 3 = (2 + 8) % 3 = 1
P(7) = (P(6) + 2^(7/2)) % 3 = (1 + 8) % 3 = 0
P(8) = (P(7) + 2^(8/2)) % 3 = 16 % 3 = 1
P(9) = (P(8) + 2^(9/2)) % 3 = (1 + 16) % 3 = 2
P(10) = (P(9) + 2^(10/2)) % 3 = (2 + 32) % 3 = 1
P(11) = (P(10) + 2^(11/2)) % 3 = (1 + 32) % 3 = 0
P(12) = (P(11) + 2^(12/2)) % 3 = (0 + 64) % 3 = 1
and you see that the period is 4.
Generally (suppose X is odd, it's a bit more involved for even X), let k be the period of 2 modulo X, i.e. k > 0, 2^k % X = 1, and k is minimal with these properties (see below).
Consider all arithmetic modulo X. Then
n
P(n) = 2 + ∑ 2^(j/2)
j=2
It is easier to see when we separately consider odd and even n:
m m
P(2*m+1) = 2 + 2 * ∑ 2^i = 2 * ∑ 2^i = 2*(2^(m+1) - 1) = 2^((n+2)/2) + 2^((n+1)/2) - 2
i=1 i=0
since each 2^j appears twice, for j = 2*i and j = 2*i+1. For even n = 2*m, there's one summand 2^m missing, so
P(2*m) = 2^(m+1) + 2^m - 2 = 2^((n+2)/2) + 2^((n+1)/2) - 2
and we see that the length of the period is 2*k, since the changing parts 2^((n+1)/2) and 2^((n+2)/2) have that period. The period immediately begins, there is no pre-period part (there can be a pre-period for even X).
Now k <= φ(X) by Euler's generalisation of Fermat's theorem, so the period is at most 2 * φ(X).
(φ is Euler's totient function, i.e. φ(n) is the number of integers 1 <= k <= n with gcd(n,k) = 1.)
What makes it possible that the period is longer than X is that P(n+1) is not completely determined by P(n), the value of n also plays a role in determining P(n+1), in this case the dependence is simple, each power of 2 being used twice in succession doubles the period of the pure powers of 2.
Consider the sequence a[k] = (2^k) % X for odd X > 1. It has the simple recurrence
a[0] = 1
a[k+1] = (2 * a[k]) % X
so each value completely determines the next, thus the entire following part of the sequence. (Since X is assumed odd, it also determines the previous value [if k > 0] and thus the entire previous part of the sequence. With H = (X+1)/2, we have a[k-1] = (H * a[k]) % X.)
Hence if the sequence assumes one value twice (and since there are only X possible values, that must happen within the first X+1 values), at indices i and j = i+p > i, say, the sequence repeats and we have a[k+p] = a[k] for all k >= i. For odd X, we can go back in the sequence, therefore a[k+p] = a[k] also holds for 0 <= k < i. Thus the first value that occurs twice in the sequence is a[0] = 1.
Let p be the smallest positive integer with a[p] = 1. Then p is the length of the smallest period of the sequence a, and a[k] = 1 if and only if k is a multiple of p, thus the set of periods of a is the set of multiples of p. Euler's theorem says that a[φ(X)] = 1, from that we can conclude that p is a divisor of φ(X), in particular p <= φ(X) < X.
Now back to the original sequence.
P(n) = 2 + a[1] + a[1] + a[2] + a[2] + ... + a[n/2]
= a[0] + a[0] + a[1] + a[1] + a[2] + a[2] + ... + a[n/2]
Since each a[k] is used twice in succession, it is natural to examine the subsequences for even and odd indices separately,
E[m] = P(2*m)
O[m] = P(2*m+1)
then the transition from one value to the next is more regular. For the even indices we find
E[m+1] = E[m] + a[m] + a[m+1] = E[m] + 3*a[m]
and for the odd indices
O[m+1] = O[m] + a[m+1] + a[m+1] = O[m] + 2*a[m+1]
Now if we ignore the modulus for the moment, both E and O are geometric sums, so there's an easy closed formula for the terms. They have been given above (in slightly different form),
E[m] = 3 * 2^m - 2 = 3 * a[m] - 2
O[m] = 2 * 2^(m+1) - 2 = 2 * a[m+1] - 2 = a[m+2] - 2
So we see that O has the same (minimal) period as a, namely p, and E also has that period. Unless maybe if X is divisible by 3, that is also the minimal (positive) period of E (if X is divisible by 3, the minimal positive period of E could be a proper divisor of p, for X = 3 e.g., E is constant).
Thus we see that 2*p is a period of the sequence P obtained by interlacing E and O.
It remains to be seen that 2*p is the minimal positive period of P. Let m be the minimal positive period. Then m is a divisor of 2*p.
Suppose m were odd, m = 2*j+1. Then
P(1) = P(m+1) = P(2*m+1)
P(2) = P(m+2) = P(2*m+2)
and consequently
P(2) - P(1) = P(m+2) - P(m+1) = P(2*m+2) - P(2*m+1)
But P(2) - P(1) = a[1] and
P(m+2) - P(m+1) = a[(m+2)/2] = a[j+1]
P(2*m+2) - P(2*m+1) = a[(2*m+2)/2] = a[m+1] = a[2*j+2]
So we must have a[1] = a[j+1], hence j is a period of a, and a[j+1] = a[2*j+2], hence j+1 is a period of a too. But that means that 1 is a period of a, which implies X = 1, a contradiction.
Therefore m is even, m = 2*j. But then j is a period of O (and of E), thus a multiple of p. On the other hand, m <= 2*p implies j <= p, and the only (positive) multiple of p satisfying that inequality is p itself, hence j = p, m = 2*p.

Function to return date of Easter for the given year

So, here's a funny little programming challenge. I was writing a quick method to determine all the market holidays for a particular year, and then I started reading about Easter and discovered just how crazy* the logic is for determining its date--the first Sunday after the Paschal Full Moon following the spring equinox! Does anybody know of an existing function to calculate the date of Easter for a given year?
Granted, it's probably not all that hard to do; I just figured I'd ask in case somebody's already done this. (And that seems very likely.)
UPDATE: Actually, I'm really looking for the date of Good Friday (the Friday before Easter)... I just figured Easter would get me there. And since I'm in the U.S., I assume I'm looking for the Catholic Easter? But perhaps someone can correct me on that if I'm wrong.
*By "crazy" I meant, like, involved. Not anything offensive...
Python: using dateutil's easter() function.
>>> from dateutil.easter import *
>>> print easter(2010)
2010-04-04
>>> print easter(2011)
2011-04-24
The functions gets, as an argument, the type of calculation you like:
EASTER_JULIAN = 1
EASTER_ORTHODOX = 2
EASTER_WESTERN = 3
You can pick the one relevant to the US.
Reducing two days from the result would give you Good Friday:
>>> from datetime import timedelta
>>> d = timedelta(days=-2)
>>> easter(2011)
datetime.date(2011, 4, 24)
>>> easter(2011)+d
datetime.date(2011, 4, 22)
Oddly enough, someone was iterating this, and published the results in Wikipedia's article about the algorithm:
in SQL Server Easter Sunday would look like this, scroll down for Good Friday
CREATE FUNCTION dbo.GetEasterSunday
( #Y INT )
RETURNS SMALLDATETIME
AS
BEGIN
DECLARE #EpactCalc INT,
#PaschalDaysCalc INT,
#NumOfDaysToSunday INT,
#EasterMonth INT,
#EasterDay INT
SET #EpactCalc = (24 + 19 * (#Y % 19)) % 30
SET #PaschalDaysCalc = #EpactCalc - (#EpactCalc / 28)
SET #NumOfDaysToSunday = #PaschalDaysCalc - (
(#Y + #Y / 4 + #PaschalDaysCalc - 13) % 7
)
SET #EasterMonth = 3 + (#NumOfDaysToSunday + 40) / 44
SET #EasterDay = #NumOfDaysToSunday + 28 - (
31 * (#EasterMonth / 4)
)
RETURN
(
SELECT CONVERT
( SMALLDATETIME,
RTRIM(#Y)
+ RIGHT('0'+RTRIM(#EasterMonth), 2)
+ RIGHT('0'+RTRIM(#EasterDay), 2)
)
)
END
GO
Good Friday is like this and it uses the Easter function above
CREATE FUNCTION dbo.GetGoodFriday
(
#Y INT
)
RETURNS SMALLDATETIME
AS
BEGIN
RETURN (SELECT dbo.GetEasterSunday(#Y) - 2)
END
GO
From here: http://web.archive.org/web/20070611150639/http://sqlserver2000.databases.aspfaq.com/why-should-i-consider-using-an-auxiliary-calendar-table.html
When it came for me to write this (traffic prediction based on day of week and holiday),
I gave up on trying to write it by myself. I found it somewhere on the net. The code was public domain, but...
sigh
see for yourself.
void dateOfEaster(struct tm* p)
{
int Y = p->tm_year;
int a = Y % 19;
int b = Y / 100;
int c = Y % 100;
int d = b / 4;
int e = b % 4;
int f = (b + 8) / 25;
int g = (b - f + 1) / 3;
int h = (19 * a + b - d - g + 15) % 30;
int i = c / 4;
int k = c % 4;
int L = (32 + 2 * e + 2 * i - h - k) % 7;
int m = (a + 11 * h + 22 * L) / 451;
p->tm_mon = ((h + L - 7 * m + 114) / 31 ) - 1;
p->tm_mday = ((h + L - 7 * m + 114) % 31) + 1;
p->tm_hour = 12;
const time_t tmp = mktime(p);
*p = *localtime(&tmp); //recover yday from mon+mday
}
Some questions are better left unasked.
I feel lucky that all moving holidays in my country are a fixed offset from the date of Easter.
The SQL Server function below is more general than the accepted answer
The accepted answer is only correct for the range (inclusive) : 1900-04-15 to 2099-04-12
It uses the algorithm provided by The United States Naval Observatory (USNO)
http://aa.usno.navy.mil/faq/docs/easter.php
CREATE FUNCTION dbo.GetEasterSunday (#Y INT)
RETURNS DATETIME
AS
BEGIN
-- Source of algorithm : http://aa.usno.navy.mil/faq/docs/easter.php
DECLARE #c INT = #Y / 100
DECLARE #n INT = #Y - 19 * (#Y / 19)
DECLARE #k INT = (#c - 17) / 25
DECLARE #i INT = #c - #c / 4 - (#c - #k) / 3 + 19 * #n + 15
SET #i = #i - 30 * (#i / 30)
SET #i = #i - (#i / 28) * (1 - (#i / 28) * (29 / (#i + 1)) * ((21 - #n) / 11))
DECLARE #j INT = #Y + #Y / 4 + #i + 2 - #c + #c / 4
SET #j = #j - 7 * (#j / 7)
DECLARE #l INT = #i - #j
DECLARE #m INT = 3 + (#l + 40) / 44
DECLARE #d INT = #l + 28 - 31 * (#m / 4)
RETURN
(
SELECT CONVERT
( DATETIME,
RTRIM(#Y)
+ RIGHT('0'+RTRIM(#m), 2)
+ RIGHT('0'+RTRIM(#d), 2)
)
)
END
GO
VB .NET Functions for Greek Orthodox and Catholic Easter:
Public Shared Function OrthodoxEaster(ByVal Year As Integer) As Date
Dim a = Year Mod 19
Dim b = Year Mod 7
Dim c = Year Mod 4
Dim d = (19 * a + 16) Mod 30
Dim e = (2 * c + 4 * b + 6 * d) Mod 7
Dim f = (19 * a + 16) Mod 30
Dim key = f + e + 3
Dim month = If((key > 30), 5, 4)
Dim day = If((key > 30), key - 30, key)
Return New DateTime(Year, month, day)
End Function
Public Shared Function CatholicEaster(ByVal Year As Integer) As DateTime
Dim month = 3
Dim a = Year Mod 19 + 1
Dim b = Year / 100 + 1
Dim c = (3 * b) / 4 - 12
Dim d = (8 * b + 5) / 25 - 5
Dim e = (5 * Year) / 4 - c - 10
Dim f = (11 * a + 20 + d - c) Mod 30
If f = 24 Then f += 1
If (f = 25) AndAlso (a > 11) Then f += 1
Dim g = 44 - f
If g < 21 Then g = g + 30
Dim day = (g + 7) - ((e + g) Mod 7)
If day > 31 Then
day = day - 31
month = 4
End If
Return New DateTime(Year, month, day)
End Function
The below code determines Easter through powershell:
function Get-DateOfEaster {
param(
[Parameter(ValueFromPipeline)]
$theYear=(Get-Date).Year
)
if($theYear -lt 1583) {
return $null
} else {
# Step 1: Divide the theYear by 19 and store the
# remainder in variable A. Example: If the theYear
# is 2000, then A is initialized to 5.
$a = $theYear % 19
# Step 2: Divide the theYear by 100. Store the integer
# result in B and the remainder in C.
$c = $theYear % 100
$b = ($theYear -$c) / 100
# Step 3: Divide B (calculated above). Store the
# integer result in D and the remainder in E.
$e = $b % 4
$d = ($b - $e) / 4
# Step 4: Divide (b+8)/25 and store the integer
# portion of the result in F.
$f = [math]::floor(($b + 8) / 25)
# Step 5: Divide (b-f+1)/3 and store the integer
# portion of the result in G.
$g = [math]::floor(($b - $f + 1) / 3)
# Step 6: Divide (19a+b-d-g+15)/30 and store the
# remainder of the result in H.
$h = (19 * $a + $b - $d - $g + 15) % 30
# Step 7: Divide C by 4. Store the integer result
# in I and the remainder in K.
$k = $c % 4
$i = ($c - $k) / 4
# Step 8: Divide (32+2e+2i-h-k) by 7. Store the
# remainder of the result in L.
$l = (32 + 2 * $e + 2 * $i - $h - $k) % 7
# Step 9: Divide (a + 11h + 22l) by 451 and
# store the integer portion of the result in M.
$m = [math]::floor(($a + 11 * $h + 22 * $l) / 451)
# Step 10: Divide (h + l - 7m + 114) by 31. Store
# the integer portion of the result in N and the
# remainder in P.
$p = ($h + $l - 7 * $m + 114) % 31
$n = (($h + $l - 7 * $m + 114) - $p) / 31
# At this point p+1 is the day on which Easter falls.
# n is 3 for March and 4 for April.
$DateTime = New-Object DateTime $theyear, $n, ($p+1), 0, 0, 0, ([DateTimeKind]::Utc)
return $DateTime
}
}
$eastersunday=Get-DateOfEaster 2015
Write-Host $eastersunday
Found this Excel formula somewhere
Assuming cell A1 contains year e.g. 2020
ROUND(DATE(A1;4;1)/7+MOD(19*MOD(A1;19)-7;30)*0,14;0)*7-6
Converted to T-SQL lead me to this:
DECLARE #yr INT=2020
SELECT DATEADD(dd, ROUND(DATEDIFF(dd, '1899-12-30', DATEFROMPARTS(#yr, 4, 1)) / 7.0 + ((19.0 * (#yr % 19) - 7) % 30) * 0.14, 0) * 7.0 - 6, -2)
In JS, taken from here.
var epoch=2444238.5,elonge=278.83354,elongp=282.596403,eccent=.016718,sunsmax=149598500,sunangsiz=.533128,mmlong=64.975464,mmlongp=349.383063,mlnode=151.950429,minc=5.145396,mecc=.0549,mangsiz=.5181,msmax=384401,mparallax=.9507,synmonth=29.53058868,lunatbase=2423436,earthrad=6378.16,PI=3.141592653589793,epsilon=1e-6;function sgn(x){return x<0?-1:x>0?1:0}function abs(x){return x<0?-x:x}function fixAngle(a){return a-360*Math.floor(a/360)}function toRad(d){return d*(PI/180)}function toDeg(d){return d*(180/PI)}function dsin(x){return Math.sin(toRad(x))}function dcos(x){return Math.cos(toRad(x))}function toJulianTime(date){var year,month,day;year=date.getFullYear();var m=(month=date.getMonth()+1)>2?month:month+12,y=month>2?year:year-1,d=(day=date.getDate())+date.getHours()/24+date.getMinutes()/1440+(date.getSeconds()+date.getMilliseconds()/1e3)/86400,b=isJulianDate(year,month,day)?0:2-y/100+y/100/4;return Math.floor(365.25*(y+4716)+Math.floor(30.6001*(m+1))+d+b-1524.5)}function isJulianDate(year,month,day){if(year<1582)return!0;if(year>1582)return!1;if(month<10)return!0;if(month>10)return!1;if(day<5)return!0;if(day>14)return!1;throw"Any date in the range 10/5/1582 to 10/14/1582 is invalid!"}function jyear(td,yy,mm,dd){var z,f,alpha,b,c,d,e;return f=(td+=.5)-(z=Math.floor(td)),b=(z<2299161?z:z+1+(alpha=Math.floor((z-1867216.25)/36524.25))-Math.floor(alpha/4))+1524,c=Math.floor((b-122.1)/365.25),d=Math.floor(365.25*c),e=Math.floor((b-d)/30.6001),{day:Math.floor(b-d-Math.floor(30.6001*e)+f),month:Math.floor(e<14?e-1:e-13),year:Math.floor(mm>2?c-4716:c-4715)}}function jhms(j){var ij;return j+=.5,ij=Math.floor(86400*(j-Math.floor(j))+.5),{hour:Math.floor(ij/3600),minute:Math.floor(ij/60%60),second:Math.floor(ij%60)}}function jwday(j){return Math.floor(j+1.5)%7}function meanphase(sdate,k){var t,t2;return 2415020.75933+synmonth*k+1178e-7*(t2=(t=(sdate-2415020)/36525)*t)-155e-9*(t2*t)+33e-5*dsin(166.56+132.87*t-.009173*t2)}function truephase(k,phase){var t,t2,t3,pt,m,mprime,f,apcor=!1;if(pt=2415020.75933+synmonth*(k+=phase)+1178e-7*(t2=(t=k/1236.85)*t)-155e-9*(t3=t2*t)+33e-5*dsin(166.56+132.87*t-.009173*t2),m=359.2242+29.10535608*k-333e-7*t2-347e-8*t3,mprime=306.0253+385.81691806*k+.0107306*t2+1236e-8*t3,f=21.2964+390.67050646*k-.0016528*t2-239e-8*t3,phase<.01||abs(phase-.5)<.01?(pt+=(.1734-393e-6*t)*dsin(m)+.0021*dsin(2*m)-.4068*dsin(mprime)+.0161*dsin(2*mprime)-4e-4*dsin(3*mprime)+.0104*dsin(2*f)-.0051*dsin(m+mprime)-.0074*dsin(m-mprime)+4e-4*dsin(2*f+m)-4e-4*dsin(2*f-m)-6e-4*dsin(2*f+mprime)+.001*dsin(2*f-mprime)+5e-4*dsin(m+2*mprime),apcor=!0):(abs(phase-.25)<.01||abs(phase-.75)<.01)&&(pt+=(.1721-4e-4*t)*dsin(m)+.0021*dsin(2*m)-.628*dsin(mprime)+.0089*dsin(2*mprime)-4e-4*dsin(3*mprime)+.0079*dsin(2*f)-.0119*dsin(m+mprime)-.0047*dsin(m-mprime)+3e-4*dsin(2*f+m)-4e-4*dsin(2*f-m)-6e-4*dsin(2*f+mprime)+.0021*dsin(2*f-mprime)+3e-4*dsin(m+2*mprime)+4e-4*dsin(m-2*mprime)-3e-4*dsin(2*m+mprime),pt+=phase<.5?.0028-4e-4*dcos(m)+3e-4*dcos(mprime):4e-4*dcos(m)-.0028-3e-4*dcos(mprime),apcor=!0),!apcor)throw"Error calculating moon phase!";return pt}function phasehunt(sdate,phases){var adate,k1,k2,nt1,nt2,yy,mm,dd,jyearResult=jyear(adate=sdate-45,yy,mm,dd);for(yy=jyearResult.year,mm=jyearResult.month,dd=jyearResult.day,adate=nt1=meanphase(adate,k1=Math.floor(12.3685*(yy+1/12*(mm-1)-1900)));nt2=meanphase(adate+=synmonth,k2=k1+1),!(nt1<=sdate&&nt2>sdate);)nt1=nt2,k1=k2;return phases[0]=truephase(k1,0),phases[1]=truephase(k1,.25),phases[2]=truephase(k1,.5),phases[3]=truephase(k1,.75),phases[4]=truephase(k2,0),phases}function kepler(m,ecc){var e,delta;e=m=toRad(m);do{e-=(delta=e-ecc*Math.sin(e)-m)/(1-ecc*Math.cos(e))}while(abs(delta)>epsilon);return e}function getMoonPhase(julianDate){var Day,N,M,Ec,Lambdasun,ml,MM,MN,Ev,Ae,MmP,mEc,lP,lPP,NP,y,x,MoonAge,MoonPhase,MoonDist,MoonDFrac,MoonAng,F,SunDist,SunAng;return N=fixAngle(360/365.2422*(Day=julianDate-epoch)),Ec=kepler(M=fixAngle(N+elonge-elongp),eccent),Ec=Math.sqrt((1+eccent)/(1-eccent))*Math.tan(Ec/2),Lambdasun=fixAngle((Ec=2*toDeg(Math.atan(Ec)))+elongp),F=(1+eccent*Math.cos(toRad(Ec)))/(1-eccent*eccent),SunDist=sunsmax/F,SunAng=F*sunangsiz,ml=fixAngle(13.1763966*Day+mmlong),MM=fixAngle(ml-.1114041*Day-mmlongp),MN=fixAngle(mlnode-.0529539*Day),MmP=MM+(Ev=1.2739*Math.sin(toRad(2*(ml-Lambdasun)-MM)))-(Ae=.1858*Math.sin(toRad(M)))-.37*Math.sin(toRad(M)),lPP=(lP=ml+Ev+(mEc=6.2886*Math.sin(toRad(MmP)))-Ae+.214*Math.sin(toRad(2*MmP)))+.6583*Math.sin(toRad(2*(lP-Lambdasun))),NP=MN-.16*Math.sin(toRad(M)),y=Math.sin(toRad(lPP-NP))*Math.cos(toRad(minc)),x=Math.cos(toRad(lPP-NP)),toDeg(Math.atan2(y,x)),NP,toDeg(Math.asin(Math.sin(toRad(lPP-NP))*Math.sin(toRad(minc)))),MoonAge=lPP-Lambdasun,MoonPhase=(1-Math.cos(toRad(MoonAge)))/2,MoonDist=msmax*(1-mecc*mecc)/(1+mecc*Math.cos(toRad(MmP+mEc))),MoonAng=mangsiz/(MoonDFrac=MoonDist/msmax),mparallax/MoonDFrac,{moonIllumination:MoonPhase,moonAgeInDays:synmonth*(fixAngle(MoonAge)/360),distanceInKm:MoonDist,angularDiameterInDeg:MoonAng,distanceToSun:SunDist,sunAngularDiameter:SunAng,moonPhase:fixAngle(MoonAge)/360}}function getMoonInfo(date){return null==date?{moonPhase:0,moonIllumination:0,moonAgeInDays:0,distanceInKm:0,angularDiameterInDeg:0,distanceToSun:0,sunAngularDiameter:0}:getMoonPhase(toJulianTime(date))}function getEaster(year){var previousMoonInfo,moonInfo,fullMoon=new Date(year,2,21),gettingDarker=void 0;do{previousMoonInfo=getMoonInfo(fullMoon),fullMoon.setDate(fullMoon.getDate()+1),moonInfo=getMoonInfo(fullMoon),void 0===gettingDarker?gettingDarker=moonInfo.moonIllumination<previousMoonInfo.moonIllumination:gettingDarker&&moonInfo.moonIllumination>previousMoonInfo.moonIllumination&&(gettingDarker=!1)}while(gettingDarker&&moonInfo.moonIllumination<previousMoonInfo.moonIllumination||!gettingDarker&&moonInfo.moonIllumination>previousMoonInfo.moonIllumination);for(fullMoon.setDate(fullMoon.getDate()-1);0!==fullMoon.getDay();)fullMoon.setDate(fullMoon.getDate()+1);return fullMoon}
Then run getEaster(2020); // -> Sun Apr 12 2020

Resources