I'm in the process of putting some incidence data together for a proposal. I know that the data takes on a sigmoid shape overall so I fit it using NLS in R. I was trying to get some confidence intervals to plot as well so I used bootstrapping for the parameters, made three lines and here's where I'm having my problem. The bootstrapped CIs give me three sets of values, but because of equation the lines they are crossing.
Picture of Current Plot with "Ideal" Lines in Black
NLS is not my strong suit so perhaps I'm not going about this the right way. I've used mainly a self start function to this point just to get something down on the plot. The second NLS equation will give the same output, but I've put it down now so that I can alter later if needed.
Here is my code thus far:
data <- readRDS(file = "Incidence.RDS")
inc <- nls(y ~ SSlogis(x, beta1, beta2, beta3),
data = data,
control = list(maxiter = 100))
b1 <- summary(inc)$coefficients[1,1]
b2 <- summary(inc)$coefficients[2,1]
b3 <- summary(inc)$coefficients[3,1]
inc2 <- nls(y ~ phi1 / (1 + exp(-(x - phi2) / phi3)),
data = data,
start = list(phi1 = b1, phi2 = b2, phi3 = b3),
control = list(maxiter = 100))
inc2.boot <- nlsBoot(inc2, niter = 1000)
phi1 <- summary(inc2)$coefficients[1,1]
phi2 <- summary(inc2)$coefficients[2,1]
phi3 <- summary(inc2)$coefficients[3,1]
phi1_L <- inc2.boot$bootCI[1,2]
phi2_L <- inc2.boot$bootCI[2,2]
phi3_L <- inc2.boot$bootCI[3,2]
phi1_U <- inc2.boot$bootCI[1,3]
phi2_U <- inc2.boot$bootCI[2,3]
phi3_U <- inc2.boot$bootCI[3,3]
#plot lines
age <- c(20:95)
mean_incidence <- phi1 / (1 + exp(-(age - phi2) / phi3))
lower_incidence <- phi1_L / (1 + exp(-(age - phi2_L) / phi3_L))
upper_incidence <- phi1_U / (1 + exp(-(age - phi2_U) / phi3_U))
inc_line <- data.frame(age, mean_incidence, lower_incidence, upper_incidence)
p <- ggplot()
p <- (p
+ geom_point(data = data, aes(x = x, y = y), color = "darkgreen")
+ geom_line(data = inc_line,
aes(x = age, y = mean_incidence),
color = "blue",
linetype = "solid")
+ geom_line(data = inc_line,
aes(x = age, y = lower_incidence),
color = "blue",
linetype = "dashed")
+ geom_line(data = inc_line,
aes(x = age, y = upper_incidence),
color = "blue",
linetype = "dashed")
+ geom_ribbon(data = inc_line,
aes(x = age, ymin = lower_incidence, ymax = upper_incidence),
fill = "blue", alpha = 0.20)
+ labs(x = "\nAge", y = "Incidence (per 1,000 person years)\n")
)
print(p)
Here's a link to the data.
Any help on what to do next or if this is even possible given my current set up would be appreciated.
Thanks
Try plot.drc in the drc package.
library(drc)
fm <- drm(y ~ x, data = data, fct = LL.3())
plot(fm, type = "bars")
P.S. Please include the library calls in your questions so that the code is self contained and complete. In the case of the question here: library(ggplot2); library(nlstools) .
Related
I use plot_summs to plot my regression coefficients. below is a reproducible sample. I want to do two things. First, I want to remove Frost and Murder from the graph. Second, I want to change the color of Illiteracy and Population to Green and Life Exp and HS Grad to red. I’d appreciate any help I can get here.
fit1 <- lm(Income ~ Frost + Illiteracy + Murder +
Population + Area + Life Exp + HS Grad,
data = states, weights = runif(50, 0.1, 3))
plot_summs(fit1, scale = TRUE)
Without using the jtools package:
If I'm not wrong, plot_summ with scale - TRUE, scales the independent variables and plots the summary of the variable estimates, with mean as point and 2*SE as segments.
states2 <- states
states2[,-1] <- scale(states2[,-1]) # Considering first column is Income
fit2 <- lm(Income ~ ., data = states2, weights = runif(50, 0.1, 3))
df <- as.data.frame(summary(fit2)[["coefficients"]][-1,1:2])
df$variable <- rownames(df)
df <- df[!df$variable %in% c("Frost", "Murder"), ]
library(ggplot2)
ggplot(df) +
geom_point(aes(x = variable, y = Estimate,
color = variable), size = 6) +
geom_segment(aes(x = variable, xend = variable,
y = Estimate - (2 * `Std. Error`),
yend = Estimate + (2 * `Std. Error`),
color = variable), lwd = 2) +
scale_color_manual(values = c("Illiteracy" = "green","Population" = "green",
"Area" = "blue",
"`Life Exp`" = "red", "`HS Grad`" = "red")) +
coord_flip() +
theme_classic()
I need to create an insightful graphic with a regression line, data points, and confidence intervals. I am not looking for smoothed lines. I have tried multiple codes, but I just can't get it right.
I am looking for something like this:
Some codes I have tried:
p <- scatterplot(df.regsoft$w ~ df.regsoft$b,
data = df.regsoft,
boxplots = FALSE,
regLine = list(method=lm, col="red"),
pch = 16,
cex = 0.7,
xlab = "Fitted Values",
ylab = "Residuals",
legend = TRUE,
smooth = FALSE)
abline(coef = confint.lm(result.rs))
But this doesn't create what I want to create, however it is closest to what I intended. Notice that I took out "smooth" since this is not really what I am looking for.
How can I make this plot interactive?
If you don't mind switch to ggplot and the tidyverse, then this is simply a geom_smooth(method = "lm"):
library(tidyverse)
d <- tibble( #random stuff
x = rnorm(100, 0, 1),
y = 0.25 * x + rnorm(100, 0, 0.25)
)
m <- lm(y ~ x, data = d) #linear model
d %>%
ggplot() +
aes(x, y) + #what to plot
geom_point() +
geom_smooth(method = "lm") +
theme_bw()
without method = "lm" it draws a smoothed line.
As for the Conf. interval (Obs 95%) lines, it seems to me that's simply a quantile regression. In that case, you can use the quantreg package.
If you want to make it interactive, you can use the plotly package:
library(plotly)
p <- d %>%
ggplot() +
aes(x, y) +
geom_point() +
geom_smooth(method = "lm") +
theme_bw()
ggplotly(p)
================================================
P.S.
I am not completely sure this is what the figure you posted is showing (I guess so), but to add the quantile lines, I would just perform two quantile regressions (upper and lower) and then calculate the values of the quantile lines for your data:
library(tidyverse)
library(quantreg)
d <- tibble( #random stuff
x = rnorm(100, 0, 1),
y = 0.25 * x + rnorm(100, 0, 0.25)
)
m <- lm(y ~ x, data = d) #linear model
# 95% quantile, two tailed
rq_low <- rq(y ~ x, data = d, tau = 0.025) #lower quantile
rq_high <- rq(y ~ x, data = d, tau = 0.975) #upper quantile
d %>%
mutate(low = rq_low$coefficients[1] + x * rq_low$coefficients[2],
high = rq_high$coefficients[1] + x * rq_high$coefficients[2]) %>%
ggplot() +
geom_point(aes(x, y)) +
geom_smooth(aes(x, y), method = "lm") +
geom_line(aes(x, low), linetype = "dashed") +
geom_line(aes(x, high), linetype = "dashed") +
theme_bw()
I want to achieve the exact same thing asked in this question:
How to plot the survival curve generated by survreg (package survival of R)?
Except for the fact that I don't want the data to be stratified by a variable (in the question above it was stratified by sex).
I just want the progression free survival for the whole group of treated patients.
So when I copy the code from the other question, here is where I get stuck:
library(survminer)
library(tidyr)
s <- with(lung,Surv(time,status))
fKM <- survfit(s ~ sex,data=lung)
sWei <- survreg(s ~ as.factor(sex),dist='weibull',data=lung) # in my case here I would replace as.factor(sex) by 1
pred.sex1 = predict(sWei, newdata=list(sex=1),type="quantile",p=seq(.01,.99,by=.01)) #Since I don't want to stratify, what do I do with these 2 lines of code?
pred.sex2 = predict(sWei, newdata=list(sex=2),type="quantile",p=seq(.01,.99,by=.01))
df = data.frame(y=seq(.99,.01,by=-.01), sex1=pred.sex1, sex2=pred.sex2)
df_long = gather(df, key= "sex", value="time", -y)
p = ggsurvplot(fKM, data = lung, risk.table = T)
p$plot = p$plot + geom_line(data=df_long, aes(x=time, y=y, group=sex))
I tried replacing as.factor(sex) by 1 and then the rest of the code just does not make sense, can someone help me with this?
Many thanks in advance!
If you just want to plot the overall empirical survival curve, you might do something like this:
library(survival)
library(survminer)
library(tidyr)
s <- with(lung, Surv(time, status))
fKM <- survfit(s ~ 1, data = survival::lung)
ggsurvplot(fKM, ggtheme = theme_bw())
However, if you want to fit a Weibull model with no predictors, then your formula is fine.
sWei <- survreg(s ~ 1, dist = 'weibull', data = lung)
probs <- seq(0.01, 1, by = 0.01)
time <- predict(sWei, type = "quantile", se = TRUE, p = probs)
The only problem is that time is now a named list of two matrices: fit and se.fit. Both have the same number of rows as lung, but all rows are identical, so we just take one from each and calculate the confidence interval in a data frame which we can then use to create a ggplot:
ggplot(data = data.frame(p = 1 - probs,
time = time$fit[1,],
upper = time$fit[1,] + 1.96 * time$se.fit[1,],
lower = time$fit[1,] - 1.96 * time$se.fit[1,])) +
geom_step(aes(p, time, colour = "All"), size = 1) +
geom_ribbon(aes(p, ymin = lower, ymax = upper, fill = "All"), alpha = 0.2) +
coord_flip(ylim = c(0, 1000)) +
scale_fill_discrete(name = "Strata") +
scale_color_discrete(name = "Strata") +
theme_bw() +
theme(legend.position = "top")
Which we can see looks like a pretty good fit.
If you want both in the same plot you can do something like:
df <- data.frame(p = 1 - probs,
time = time$fit[1,],
upper = time$fit[1,] + 1.96 * time$se.fit[1,],
lower = time$fit[1,] - 1.96 * time$se.fit[1,])
ggsurvplot(fKM, ggtheme = theme_bw())$plot +
geom_line(data = df, aes(time, p), linetype = 2, size = 1) +
geom_line(data = df, aes(upper, p), linetype = 2, size = 1) +
geom_line(data = df, aes(lower, p), linetype = 2, size = 1)
Created on 2020-08-18 by the reprex package (v0.3.0)
I would like to use ggplot to replicate the plots partial effects (with partial residuals), as obtained with the "effect" package. To do this I need to retrieve some information.
This is the plot I want to replicate with ggplot.
library(effects)
mod <- lm(log(prestige) ~ income:type + education, data=Prestige)
eff = effect("education", mod, partial.residuals=T)
plot(eff)
From the eff object I am able to retrieve the partial residuals, as eff$residuals, but they are not sufficient to replicate the plot. I think that what I need is the both the residuals, AND the marginal predicted effect. However I was not able to retrieve them from my eff object.
Otherwise I only have the residuals scores that cannot be plotted against the line of the marginal effect.
Any hint on how to retrieve this information?
You have almost all the information available. This would take some more time to generalize, but here's some code that results in a figure approximately like from the effects package. Notice that the smoother is off, but I didn't bother to dig up why.
The code should be self explanatory. I only copied function closest from the package.
mod <- lm(log(prestige) ~ income:type + education, data=Prestige)
eff = effect("education", mod, partial.residuals=T)
library(ggplot2)
library(gridExtra)
closest <- function(x, x0) apply(outer(x, x0, FUN=function(x, x0) abs(x - x0)), 1, which.min)
x.fit <- unlist(eff$x.all)
trans <- I
x <- data.frame(lower = eff$lower, upper = eff$upper, fit = eff$fit, education = eff$x$education)
xy <- data.frame(x = x.fit, y = x$fit[closest(trans(x.fit), x$education)] + eff$residuals)
g <- ggplot(x, aes(x = education, y = fit)) +
theme_bw() +
geom_line(size = 1) +
geom_point(data = xy, aes(x = x, y = y), shape = 1, col = "blue", size = 2) +
geom_ribbon(aes(ymin = lower, ymax = upper), alpha = 0.5) +
geom_smooth(data = xy, aes(x = trans(x), y = y),
method = "loess", span = 2/3, linetype = "dashed", se = FALSE)
grid.arrange(plot(eff), g, ncol = 2)
I am a beginner at multilevel analysis and try to understand how I can do graphs with the plot functions from base-R. I understand the output of fit below but I am struggeling with the visualization. df is just some simple test data:
t <- seq(0, 10, 1)
df <- data.frame(t = t,
y = 1.5+0.5*(-1)^t + (1.5+0.5*(-1)^t) * t,
p1 = as.factor(rep(c("p1", "p2"), 10)[1:11]))
fit <- lm(y ~ t * p1, data = df)
# I am looking for an automated version of that:
plot(df$t, df$y)
lines(df$t[df$p1 == "p1"],
fit$coefficients[1] + fit$coefficients[2] * df$t[df$p1 == "p1"], col = "blue")
lines(df$t[df$p1 == "p2"],
fit$coefficients[1] + fit$coefficients[2] * df$t[df$p1 == "p2"] +
+ fit$coefficients[3] + fit$coefficients[4] * df$t[df$p1 == "p2"], col = "red")
It should know that it has to include p1 and that there are two lines.
The result should look like this:
Edit: Predict est <- predict(fit, newx = t) gives the same result as fit but still I don't know "how to cluster".
Edit 2 #Keith: The formula y ~ t * p1 reads y = (a + c * p1) + (b + d * p1) * t. For the "first blue line" c, d are both zero.
This is how I would do it. I'm including a ggplot2 version of plot as well because I find it better fitted for the way I think about plots.
This version will account for the number of levels in p1. If you want to compensate for the number of model parameters, you will just have to adjust the way you construct xy to include all the relevant variables. I should point out that if you omit the newdata argument, fitting will be done on the dataset provided to lm.
t <- seq(0, 10, 1)
df <- data.frame(t = t,
y = 1.5+0.5*(-1)^t + (1.5+0.5*(-1)^t) * t,
p1 = as.factor(rep(c("p1", "p2"), 10)[1:11]))
fit <- lm(y ~ t * p1, data = df)
xy <- data.frame(t = t, p1 = rep(levels(df$p1), each = length(t)))
xy$fitted <- predict(fit, newdata = xy)
library(RColorBrewer) # for colors, you can define your own
cols <- brewer.pal(n = length(levels(df$p1)), name = "Set1") # feel free to ignore the warning
plot(x = df$t, y = df$y)
for (i in 1:length(levels(xy$p1))) {
tmp <- xy[xy$p1 == levels(xy$p1)[i], ]
lines(x = tmp$t, y = tmp$fitted, col = cols[i])
}
library(ggplot2)
ggplot(xy, aes(x = t, y = fitted, color = p1)) +
theme_bw() +
geom_point(data = df, aes(x = t, y = y)) +
geom_line()