How to use Octave/Matlab Inline function in Scilab - scilab

How to use this Octave/Matlab inline function in Scilab?
u = inline('t>=0') where t=0:0.001:1.
y = (u(t-0.2)-u(t-0.3))
I tried it in Scilab as
deff('[u]=f(t)','u=(t>=0)')
But I am getting an error as "invalid index" in determining 'y'.

Unlike in Matlab, invoking (t>=0) gives you a boolean vector, its entries are True or False. Since you want 1s and 0s, you need bool2s to convert from boolean to integers:
deff('[u]=f(t)','u=bool2s(t>=0)')
After that you can invoke the function like any other:
t = 0:0.001:1
y = u(t-0.2)-u(t-0.3)
plot(t,y)
Personally, I never see the need for inline functions in Scilab. If I were writing the above, I would declare the function normally:
function y = u(t)
y = bool2s(t>=0)
endfunction
Unlike Matlab, Scilab allows you to have such functions appear wherever you want them in the script.

Related

How to define persistent matrix variable inside the Scilab function?

I have been developing a Scilab function where I need to have persistent variable of the matrix type. Based on my similar question I have chosen the same approach. Below is the code I have used for test of this approach.
function [u] = FuncXYZ(x)
global A;
global init;
if init == 0 then
init = 1;
A = eye(4, 4);
endif
u = A(1, 1);
endfunction
As soon as I have integrated the function inside my Xcos simulation I have been surprised that I see "0" at the output of the scifunc_block_m.
Nevertheless I have found that in case I use below given command for "return" from the function
u = A(3, 3);
the function returns really the expected "1". Additionaly if I take a look at the Variable Browser on the top right corner of the Scilab window I can't se the expected A 4x4 item. It seems that I am doing something wrong.
Can anybody give me an advice how to define a persistent variable of the matrix type inside the Scilab function?
Thanks in advance for any ideas.
Global variables are by default initialized with an empty matrix. Hence, you should detect first call with isempty()
function [u] = FuncXYZ(x)
global A;
global init;
if isempty(init)
init = 1;
A = eye(4, 4);
end
u = A(1, 1);
endfunction
BTW, your code is incorrect, there is no endif in Scilab.

porting python class to Julialang

I am seeing that Julia explicitly does NOT do classes... and I should instead embrace mutable structs.. am I going down the correct path here?? I diffed my trivial example against an official flux library but cannot gather how do I reference self like a python object.. is the cleanest way to simply pass the type as a parameter in the function??
Python
# Dense Layer
class Layer_Dense
def __init__(self, n_inputs, n_neurons):
self.weights = 0.01 * np.random.randn(n_inputs, n_neurons)
self.biases = np.zeros((1, n_neurons))
def forward(self, inputs):
pass
My JuliaLang version so far
mutable struct LayerDense
num_inputs::Int64
num_neurons::Int64
weights
biases
end
function forward(layer::LayerDense, inputs)
layer.weights = 0.01 * randn(layer.num_inputs, layer.num_neurons)
layer.biases = zeros((1, layer.num_neurons))
end
The flux libraries version of a dense layer... which looks very different to me.. and I do not know what they're doing or why.. like where is the forward pass call, is it here in flux just named after the layer Dense???
source : https://github.com/FluxML/Flux.jl/blob/b78a27b01c9629099adb059a98657b995760b617/src/layers/basic.jl#L71-L111
struct Dense{F, M<:AbstractMatrix, B}
weight::M
bias::B
σ::F
function Dense(W::M, bias = true, σ::F = identity) where {M<:AbstractMatrix, F}
b = create_bias(W, bias, size(W,1))
new{F,M,typeof(b)}(W, b, σ)
end
end
function Dense(in::Integer, out::Integer, σ = identity;
initW = nothing, initb = nothing,
init = glorot_uniform, bias=true)
W = if initW !== nothing
Base.depwarn("keyword initW is deprecated, please use init (which similarly accepts a funtion like randn)", :Dense)
initW(out, in)
else
init(out, in)
end
b = if bias === true && initb !== nothing
Base.depwarn("keyword initb is deprecated, please simply supply the bias vector, bias=initb(out)", :Dense)
initb(out)
else
bias
end
return Dense(W, b, σ)
end
This is an equivalent of your Python code in Julia:
mutable struct Layer_Dense
weights::Matrix{Float64}
biases::Matrix{Float64}
Layer_Dense(n_inputs::Integer, n_neurons::Integer) =
new(0.01 * randn(n_inputs, n_neurons),
zeros((1, n_neurons)))
end
forward(ld::Layer_Dense, inputs) = nothing
What is important here:
here I create an inner constructor only, as outer constructor is not needed; as opposed in the Flux.jl code you have linked the Dense type defines both inner and outer constructors
in python forward function does not do anything, so I copied it in Julia (your Julia code worked a bit differently); note that instead of self one should pass an instance of the object to the function as the first argument (and add ::Layer_Dense type signature so that Julia knows how to correctly dispatch it)
similarly in Python you store only weights and biases in the class, I have reflected this in the Julia code; note, however, that for performance reasons it is better to provide an explicit type of these two fields of Layer_Dense struct
like where is the forward pass call
In the code you have shared only constructors of Dense object are defined. However, in the lines below here and here the Dense type is defined to be a functor.
Functors are explained here (in general) and in here (more specifically for your use case)

How to achieve type stability when assigning values with StaticArrays?

I have the following struct (simplified), and some calculations done with this struct:
mutable struct XX{VecType}
v::VecType
end
long_calculation(x::XX) = sum(x.v)
as a part of the program i need to update the v value. the struct is callable and mainly used as a cache. here, the use of static arrays helps a lot in speeding up calculations, but the type of v is ultimately defined by an user. my problem lies when assigning new values to XX.v:
function (f::XX)(w)
f.v .= w #here lies the problem
return long_calculation(f)
this works if v <: Array and w is of any value, but it doesn't work when v <: StaticArrays.StaticArray, as setindex! is not defined on that type.
How can i write f.v .= w in a way that, when v allows it, performs an inplace modification, but when not, just creates a new value, and stores it in the XX struct?
There's a package for exactly this use case: BangBang.jl. From there, you can use setindex!!:
f.v = setindex!!(f.v, w)
Here I propose a simple solution that should be enough in most cases. Use multiple dispatch and define the following function:
my_assign!(f::XX, w) = (f.v .= w)
my_assign!(f::XX{<:StaticArray}, w) = (f.v = w)
and then simply call it in your code like this:
function (f::XX)(w)
my_assign!(f, w)
return long_calculation(f)
end
Then if you (or your users) get an error with a default implementation it is easy enough to add another method to my_assign! co cover other special cases when it throws an error.
Would such a solution be enough for you?

constrain argument to be in a set of values in Julia function signature

Is there a way in Julia to specify that a function argument can take one of a set of values through type annotations? For example, let's say I have function foo which accepts a single argument
function foo(x::String)
print(x)
end
the argument x can only be a String. Is there a way to further constrain it in the function signature so that it can only be for example one of the strings "right", "left", or "center"?
In Julia, the motto should be "There's a type for that!".
One way of handling this would be to create a type with a constructor that only allows the values you want (and possibly stores them in a more efficient manner).
Here is one example:
const directions = ["left", "right", "center"]
immutable MyDirection
Direction::Int8
function MyDirection(str::AbstractString)
i = findnext(directions, str, 1)
i == 0 && throw(ArgumentError("Invalid direction string"))
return new(i)
end
end
Base.show(io::IO, x::MyDirection) = print(io, string("MyDirection(\"",directions[x.Direction],"\")"))
function foo(x::MyDirection)
println(x)
end
function foo(str::AbstractString)
x = MyDirection(str)
println(x)
end
test = MyDirection("left")
foo(test)
foo("right")
Note: my example is written with Julia 0.4!
Edit:
Another approach would be to use symbols, such as :left, :right, and :center,
instead of strings.
These have the advantage of being interned (so that they can be compared simply by comparing their address), and they can also be used directly for type parameters.
For example:
immutable MyDirection{Symbol} ; end
function MyDirection(dir::Symbol)
dir in (:left, :right, :center) || error("invalid direction")
MyDirection{dir}()
end
MyDirection(dir::AbstractString) = MyDirection(symbol(dir))
That will let you do things like:
x = MyDirection("left")
which will create an immutable object of type MyDirection{:left}.
No, it is not. That would be dispatching on values, which isn't possible in Julia.
I'm not sure what your actual application is, but there are some possibly-appropriate workarounds to this, e.g.
abstract Sam81Args
type ArgRight <:Sam81Args end
type ArgLeft <:Sam81Args end
type ArgCenter <:Sam81Args end
function foo{T<:Sam81Args}(x::Type{T})
println(T)
end
foo(ArgCenter)

Scilab double integral

Below is the code for my program. I'm attempting to find the value of the integral of 1/ln(x), and then evaluate the integral from 0 to x, with this as the integrand. I'm not exactly sure what I'm doing wrong, but I am quite new to Scilab.
t = input("t");
x=10; while x<t, x=x+10,
function y=f(x), y=(1/(log (x))), endfunction
I=intg(2,x,f);
function z=g(x), z=I, endfunction
W = intg(0,x,z);
W
end
I'm not entirely sure on what you are trying to achieve, but I reformatted your code and added some suggestions to documentation.
Maybe it will help you in finding the answer.
While loop
You can convert your while loop to a for loop
Your code
x=10;
while x<t
x=x+10
//some code
end
Could be
for x=10:10:t
//some code
end
Functions
In your code, you redeclare the two functions every single iteration of the while loop. You could declare them outside the while loop and call them inside the loop.
Reformatted
t = input("Please provide t: ");
// The function of 1/ln(x)
function y=f(x), y=1/log(x), endfunction
// Every time g(x) is called the current value of I is returned
function z=g(x), z=I, endfunction
for x=10:10:t
//Find definite integral of function f from 2 to x
I = intg(2,x,f);
//Find definite integral of I from 0 to x
W = intg(0,x,g);
disp( string(W) );
end
I know the question is porbably outdated; but the topic is still active. And I was looking for a code with double integral.
Here, it looks strange to use "intg" just to calculate the area of the rectangle defined by its diagonal ((0,0), (x,I)): the result is just x*I...
May be the initial aim was to consider "I" as a function of "x" (but in this case there is a convergence problem at x=1...); so restricting the integration of "I" to something above 1 gives the following code:
x=10:10:100;W2=integrate('integrate(''1/log(x2)'',''x2'',2,x1)','x1',1.001,x);
Note the use of integration variables x1 and x2, plus the use of quotes...

Resources