Get name of function from loop variable - r

I need to loop through a number of functions, and plot/print the result next to the function name. I learned (this question/answer) that I have to use substitute / eval. This works nicely if each function name per se is enclosed in substitute() (see (A) and (B) below). Is there a way to automatize this, e.g. by using a construction similar to sapply? (C) obviously fails because substitute encloses also the c() clause, but maybe there is a something that I missed to make (D) work? Or any other ideas? Or is there no way?
This is what I tried (small examples, real code has many more functions and plotting stuff).
# A
x <- c(1:10)
my.fun <- substitute(mean) # works
print(paste(deparse(my.fun), ": ", eval(my.fun)(x), sep=""))
# B
for (my.fun in c(substitute(mean), substitute(median))) { # works, but lots of typing for longer function lists
print(paste(deparse(my.fun), ": ", eval(my.fun)(x), sep=""))
}
# C
for (my.fun in substitute(c(mean, median))) { # error: invalid for() loop sequence
print(paste(deparse(my.fun), ": ", eval(my.fun)(x), sep=""))
}
# D
for (my.fun in sapply(c(mean, median), substitute)) { # error: '...' used in an incorrect context
print(paste(deparse(my.fun), ": ", eval(my.fun)(x), sep=""))
}
# E # also not helpful
my.functions <- c(mean, median)
my.fun.2 <- NULL
for (i in 1:2) {
my.fun.2 <- c(my.fun.2, substitute(my.functions[i]))
}
# my.fun.2
# [[1]]
# my.functions[i]
# [[2]]
# my.functions[i]

What about this "one-liner"? :)
> x <- c(1:10)
> f <- function(...)
+ sapply(
+ sapply(
+ as.list(substitute(list(...)))[-1L],
+ deparse),
+ function(fn)
+ get(fn)(x))
> f(mean, median)
mean median
5.5 5.5
In short, you can pass the functions as multiple arguments, then quickly deparse those before actually evaluating the functions one by one. So the above function with a few extra comments:
#' Evaluate multiple functions on some values
#' #param ... any number of function that will take \code{x} as the argument
#' #param x values to be passed to the functions
#' #examples
#' f(mean, median)
#' f(mean, median, sum, x = mtcars$hp)
f <- function(..., x = c(1:10)) {
## get provided function names
fns <- sapply(as.list(substitute(list(...)))[-1L], deparse)
## run each function as an anonymous function on "x"
sapply(fns, function(fn) get(fn)(x))
}
Or with do.call instead of this latter anonymous function:
f <- function(..., x = c(1:10)) {
## get provided function names
fns <- sapply(as.list(substitute(list(...)))[-1L], deparse)
## run each function on "x"
sapply(fns, do.call, args = list(x))
}

Related

R: instrument function to capture all assignments

Given a regular R function f, I'd like to be able to create a new function f_debug that acts just like f, but lets me keep track of all the assignments to function-local variables that happened inside it.
For example:
f <- function(x, y) {
z <- x + y
df <- data.frame(z=z)
df
}
# This function doesn't work as intended - would like it to (in the case of `f` above)
# write out a list containing `z` and `df` to an RDS file
capturing <- function(func) {
e <- new.env()
altered <- function(...) {
parent <- parent.frame()
e <- something...(func, environment(), parent, etc., etc.)
result <- func(...)
saveRDS(as.list(e), 'foo.rds')
result
}
environment(func) <- e
altered
}
f_debug <- capturing(f)
I'm not sure whether my knowledge gap to do this is large or small, anyone have a solution?
Solution 1: Steal the function's code
Here's a solution which doesn't return a new function which captures intermediate calculations, but rather calls the given function's code internally. There's some limitations, such as it probably only works with named arguments. Instead of storing the intermediate calculations as an RDS, it attaches them as an attribute.
capturing <- function(fun, ...) {
fun <- match.fun(fun)
code <- body(fun)
parent <- environment(fun)
env <- new.env(parent = parent)
for (val in names(list(...))) {
env[[val]] <- list(...)[[val]]
}
result <- eval(code, envir = env, enclos = parent.frame())
attr(result, "intermediate") <- env
result
}
my_add <- function(x, y) {
z <- x+y
u <- x-y
w <- x*y
x + y
}
intermediates <- function(x) {
attr(x, "intermediate", exact = TRUE)
}
value <- capturing(my_add, x = 1, y = 7)
ls(envir = intermediates(value))
#> [1] "u" "w" "x" "y" "z"
intermediates(value)$x
#> [1] 1
# Created on 2022-02-08 by the reprex package (v2.0.1)
Solution 2: Modify the function's code
One weakness of this solution is that if the chosen function features a call to on.exit(add=FALSE), some additional work needs to be done to modify the function so the internal environment is captured. However, it does work when the function accepts ... arguments.
my_add <- function(x, y) {
z <- x+y
u <- x-y
w <- x*y
x + y
}
insert_capture <- function(code) {
# `<<-` assigns into the global environment if no variable of the given name is found
# while traveling up to the global environment. If you need this assignment to go elsewhere,
# I'd recommend passing in `assign()`. Of course, you could also modify the `on.exit()`
# to use saveRDS.
parse(text=append(deparse(code),
"on.exit(._last_capture <<- environment(), add = TRUE)",
after = 1L))
}
capturing2 <- function(fun) {
fun <- match.fun(fun)
code <- insert_capture(body(fun))
body(fun) <- code
fun
}
my_add2 <- capturing2(my_add)
my_add2(1, 7)
#> [1] 8
ls(envir = ._last_capture)
#> [1] "u" "w" "x" "y" "z"
._last_capture$u
#> [1] -6
Created on 2022-02-08 by the reprex package (v2.0.1)
What you are describing is already implemented in base R with utils::dump.frames, in an even more sophisticated way. It saves the frame (environment) associated with each call in the call stack to an object of class "dump.frames", which you can explore retroactively with utils::debugger as if you had actually run your code under a debugger.
capturing <- function(func, ...) {
cc <- as.call(c(quote(utils::dump.frames), list(...)))
cc <- call("on.exit", cc, add = TRUE)
body(func) <- call("{", cc, body(func))
func
}
capturing injects the call on.exit(utils::dump.frames(...), add = TRUE) into the body of func and returns the modified function.
Here, ... is a list of arguments to dump.frames:
dumpto, a character string giving the name to be used for the "dump.frames" object
to.file, a logical flag indicating whether the "dump.frames" object should be assigned in the global environment or save-ed to paste0(dumpto, ".rda") in the current working directory
include.GlobalEnv, a logical flag indicating whether the global environment should be saved as well
A quick example, which you should try yourself:
tmp <- tempfile()
dir.create(tmp)
cwd <- setwd(tmp)
f <- function(x, y) {
z <- x + y
z + 1
}
g <- capturing(f, dumpto = "zzz", to.file = TRUE)
h <- function(a, b) {
d <- g(a, b)
d + 1
}
h12 <- h(1, 2)
load("zzz.rda")
zzz
## $`h(1, 2)`
## <environment: 0x14c16cb58>
##
## $`#2: g(a, b)`
## <environment: 0x14c16ca40>
##
## attr(,"error.message")
## [1] ""
## attr(,"class")
## [1] "dump.frames"
ls(zzz[[1L]])
## [1] "a" "b"
ls(zzz[[2L]])
## [1] "z" "x" "y"
utils::debugger(zzz)
## Message: Available environments had calls:
## 1: h(1, 2)
## 2: #2: g(a, b)
##
## Enter an environment number, or 0 to exit
## Selection: 2
## Browsing in the environment with call:
## #2: g(a, b)
## Called from: debugger.look(ind)
## Browse[1]> ls()
## [1] "x" "y" "z"
## Browse[1]> x == 1 && y == 2 && z == x + y
## [1] TRUE
## Browse[1]> Q
setwd(cwd)
unlink(tmp, recursive = TRUE)
See ?browser if you are unfamiliar with R's environment browser.
My capturing function has the limitation that on.exit calls in the body of func must also use add = TRUE. If you have written func yourself, then it is not much of a limitation at all, and passing add = TRUE is a good habit anyway.
Ultimately, there is no completely safe way to inject code into functions, but, in an interactive setting, I would say that this level of "unsafety" is fine.

Evaluate listed strings to create function object in r

I need a function created by a list of commands to fully evaluate so that it is identical to the "manual" version of the function.
Background: I am using ScaleR functions in Microsoft R Server and need to apply a set of transformations as a function. ScaleR is very picky about needing to be passed a function that is phrased exactly as specified below:
functionThatWorks <- function(data) {
data$marital_status_p1_ismarried <- impute(data$marital_status_p1_ismarried)
return(data)
}
I have a function that creates this list of transformations (and hundreds more, hence the need to functionalize its writing).
transformList <- list ("data$ismarried <- impute(data$ismarried)",
"data$issingle <- impute(data$issingle)")
This line outputs the evaluated string that I want to the console, but I am unaware of a way to move it from console output to being used in a function:
cat(noquote(unlist(bquote( .(noquote(transformList[1]))))))
I need to evaluate functionIWant so that it is identical to functionThatWorks.
functionIWant <- function(data){
eval( cat(noquote(unlist(bquote( .(noquote(transformList[1])))))) )
return(data)
}
identical(functionThatWorks, functionIWant)
EDIT: Adding in the answer based on #dww 's code. It works well in ScaleR. It is identical, minus meaningless spacing.
functionIWant <- function(){}
formals(functionIWant) <- alist(data=NULL)
functionIWant.text <- parse(text = c(
paste( bquote( .(noquote(transformList[1]))), ";", "return(data)\n")
))
body(functionIWant) <- as.call(c(as.name("{"), functionIWant.text))
Maybe something like this?
# 1st define a 'hard-coded' function
f1 <- function (x = 2)
{
y <- x + 1
y^2
}
f1(3)
# [1] 16
# now create a similar function from a character vector
f2 <- function(){}
formals(f2) <- alist(x=2)
f2.text <- parse(text = c('y <- x + 1', 'y^2'))
body(f2) <- as.call(c(as.name("{"), f2.text))
f2(3)
# [1] 16

How to pass a string as a parameter to a function which expects a variable in R

The first call to the function f works, the second does not. How can I pass a String ("v") to the function f so that the function works as exspected?
library(data.table)
f<-function(t,x) t[,deparse(substitute(x)),with=F]
dat<-data.table(v="a")
f(dat,v)
# v
# 1: a
f(dat,eval(parse(text="v")))
# Error in `[.data.table`(t, , deparse(substitute(x)), with = F) :
# column(s) not found: eval(parse(text = "v"))
It won't be a one-liner anymore but you can test for what you're passing in:
library(data.table)
library(purrr)
dat <- data.table(v="a")
f <- function(dt, x) {
# first, see if 'x' is a variable holding a string with a column name
seval <- safely(eval)
res <- seval(x, dt, parent.frame())
# if it is, then get the value, otherwise substitute() it
if ((!is.null(res$result)) && inherits(res$result, "character")) {
y <- res$result
} else {
y <- substitute(x)
}
# if it's a bare name, then we deparse it, otherwise we turn
# the string into name and then deparse it
if (inherits(y, "name")) {
y <- deparse(y)
} else if (inherits(y, "character")) {
y <- deparse(as.name(x))
}
dt[, y, with=FALSE]
}
f(dat,v)
## v
## 1: a
f(dat, "v")
## v
## 1: a
V <- "v"
f(dat, V)
## v
## 1: a
f(dat, VVV)
#> throws an Error
I switched it from t to dt since I don't like using the names of built-in functions (like t()) as variable names unless I really have to. It can introduce subtle errors in larger code blocks that can be frustrating to debug.
I'd also move the safely() call outside the f() function to save a function call each time you run f(). You can use old-school try() instead, if you like, but you have to check for try-error which may break some day. You could also tryCatch() wrap it, but the safely() way just seems cleaner to me.

Anonymous passing of variables from current environment to subfunction calls

The function testfun1, defined below, does what I want it to do. (For the reasoning of all this, see the background info below the code example.) The question I wanted to ask you is why what I tried in testfun2 doesn't work. To me, both appear to be doing the exact same thing. As shown by the print in testfun2, the evaluation of the helper function inside testfun2 takes place in the correct environment, but the variables from the main function environment get magically passed to the helper function in testfun1, but not in testfun2. Does anyone of you know why?
helpfun <- function(){
x <- x^2 + y^2
}
testfun1 <- function(x,y){
xy <- x*y
environment(helpfun) <- sys.frame(sys.nframe())
x <- eval(as.call(c(as.symbol("helpfun"))))
return(list(x=x,xy=xy))
}
testfun1(x = 2,y = 1:3)
## works as intended
eval.here <- function(fun){
environment(fun) <- parent.frame()
print(environment(fun))
eval(as.call(c(as.symbol(fun))))
}
testfun2 <- function(x,y){
print(sys.frame(sys.nframe()))
xy <- x*y
x <- eval.here("helpfun")
return(list(x=x,xy=xy))
}
testfun2(x = 2,y = 1:3)
## helpfun can't find variable 'x' despite having the same environment as in testfun1...
Background info: I have a large R code in which I want to call helperfunctions inside my main function. They alter variables of the main function environment. The purpose of all this is mainly to unclutter my code. (Main function code is currently over 2000 lines, with many calls to various helperfunctions which themselves are 40-150 lines long...)
Note that the number of arguments to my helper functions is very high, so that the traditional explicit passing of function arguments ( "helpfun(arg1 = arg1, arg2 = arg2, ... , arg50 = arg50)") would be cumbersome and doesnt yield the uncluttering of the code that I am aiming for. Therefore, I need to pass the variables from the parent frame to the helper functions anonymously.
Use this instead:
eval.here <- function(fun){
fun <- get(fun)
environment(fun) <- parent.frame()
print(environment(fun))
fun()
}
Result:
> testfun2(x = 2,y = 1:3)
<environment: 0x0000000013da47a8>
<environment: 0x0000000013da47a8>
$x
[1] 5 8 13
$xy
[1] 2 4 6

Writing functions to handle multiple data types in R/Splus?

I would like to write a function that handles multiple data types. Below is an example that works but seems clunky. Is there a standard (or better) way of doing this?
(It's times like this I miss Matlab where everything is one type :>)
myfunc = function(x) {
# does some stuff to x and returns a value
# at some point the function will need to find out the number of elements
# at some point the function will need to access an element of x.
#
# args:
# x: a column of data taking on many possible types
# e.g., vector, matrix, data.frame, timeSeries, list
x.vec <- as.vector(as.matrix(as.data.frame(x)))
n <- length(x.vec)
ret <- x.vec[n/3] # this line only for concreteness
return(ret)
}
Use S3 methods. A quick example to get you started:
myfunc <- function(x) {
UseMethod("myfunc",x)
}
myfunc.data.frame <- function(x) {
x.vec <- as.vector(as.matrix(x))
myfunc(x.vec)
}
myfunc.numeric <- function(x) {
n <- length(x)
ret <- x[n/3]
return(ret)
}
myfunc.default <- function(x) {
stop("myfunc not defined for class",class(x),"\n")
}
Two notes:
The ... syntax passes any additional arguments on to functions. If you're extending an existing S3 method (e.g. writing something like summary.myobject), then including the ... is a good idea, because you can pass along arguments conventionally given to the canonical function.
print.myclass <- function(x,...) {
print(x$keyData,...)
}
You can call functions from other functions and keep things nice and parsimonious.
Hmm, your documentation for the function is
# args:
# x: a column of data taking on many possible types
# e.g., vector, matrix, data.frame, timeSeries, list
and if one supplies an object as you claim is require, isn't it already a vector and not a matrix or a data frame, hence obviating the need for separate methods/specific handling?
> dat <- data.frame(A = 1:10, B = runif(10))
> class(dat[,1])
[1] "integer"
> is.vector(dat[,1])
[1] TRUE
> is.vector(dat$A)
[1] TRUE
> is.numeric(dat$A)
[1] TRUE
> is.data.frame(dat$A)
[1] FALSE
I would:
myfunc <- function(x) {
# args:
# x: a column of data taking on many possible types
# e.g., vector, matrix, data.frame, timeSeries, list
n <- length(x)
ret <- x[n/3] # this line only for concreteness
return(ret)
}
> myfunc(dat[,1])
[1] 3
Now, if you want to handle different types of objects and extract a column, then S3 methods would be a way to go. Perhaps your example is over simplified for actual use? Anyway, S3 methods would be something like:
myfunc <- function(x, ...)
UseMethod("myfunc", x)
myfunc.matrix <- function(x, j = 1, ...) {
x <- x[, j]
myfunc.default(x, ...)
}
myfunc.data.frame <- function(x, j = 1, ...) {
x <- data.matrix(x)
myfunc.matrix(x, j, ...)
}
myfunc.default <- function(x, ...) {
n <- length(x)
x[n/3]
}
Giving:
> myfunc(dat)
[1] 3
> myfunc(data.matrix(dat))
[1] 3
> myfunc(data.matrix(dat), j = 2)
[1] 0.2789631
> myfunc(dat[,2])
[1] 0.2789631
You probably should try to use an S3 method for writing a function that will handle multiple datatypes.
A good reference is here: http://www.biostat.jhsph.edu/~rpeng/biostat776/classes-methods.pdf

Resources