I want to create the initial population in a genetic algorithm. a population consists of paths between two nodes ( source and destination). how to find all possible paths between two nodes in an undirected graph?
Thanks
You could take a recursive approach to this problem. Do something along the lines of the following. (be warned I have not refined this).
Start by selecting a random node from the graph as a start node. And select a random node as the end node.
Look at all the connections to other nodes from the start one. Do not return to previous nodes. If there are no possible connections left stop.
If the node is the end node then stop and record the path. If not, then look at all the connections to that node, and repeat this step.
Repeat this process with every pair of nodes in the graph.
I'm sure you can see the recursive part to this solution. I'm afraid I cannot write up this solution currently but I hope this might point you in the right direction.
I got an undirected graph with such that all the edges with same weight and all the vertices are connected. I want to find path between any given pair of vertices.
A less efficient solution is:
To perform BFS starting with one of the vertices, keep track of the visited vertices till the destination vertex is reached. This would perform in O(V + E). But this will have to be done for every pair of vertices given. Hence if there are M number of queries to find path, complexity would be O(M *(E+V)).
Can we do it better? Is it possible to leverage the output a BFS and solve the rest?
As you state that the graph is connected, it is not necessary to call a searching algorithm for the graph more than once. It is sufficient to use a single call to BFS (or DFS, this should make no major difference) to generate a spanning tree for the input. As from your problem statement it is apparently not necessary to find a shortest path between the vertices, any pair (a,b) of vertices is connected via the path from a to the root r of the spanning tree and the path from r to b.
The runtime would be O(V+E), namely the runtime of te searching algorithm; an additional computational cost might be necessary for the generation of the actual paths themselves.
I have a undirected graph with about 100 nodes and about 200 edges. One node is labelled 'start', one is 'end', and there's about a dozen labelled 'mustpass'.
I need to find the shortest path through this graph that starts at 'start', ends at 'end', and passes through all of the 'mustpass' nodes (in any order).
( http://3e.org/local/maize-graph.png / http://3e.org/local/maize-graph.dot.txt is the graph in question - it represents a corn maze in Lancaster, PA)
Everyone else comparing this to the Travelling Salesman Problem probably hasn't read your question carefully. In TSP, the objective is to find the shortest cycle that visits all the vertices (a Hamiltonian cycle) -- it corresponds to having every node labelled 'mustpass'.
In your case, given that you have only about a dozen labelled 'mustpass', and given that 12! is rather small (479001600), you can simply try all permutations of only the 'mustpass' nodes, and look at the shortest path from 'start' to 'end' that visits the 'mustpass' nodes in that order -- it will simply be the concatenation of the shortest paths between every two consecutive nodes in that list.
In other words, first find the shortest distance between each pair of vertices (you can use Dijkstra's algorithm or others, but with those small numbers (100 nodes), even the simplest-to-code Floyd-Warshall algorithm will run in time). Then, once you have this in a table, try all permutations of your 'mustpass' nodes, and the rest.
Something like this:
//Precomputation: Find all pairs shortest paths, e.g. using Floyd-Warshall
n = number of nodes
for i=1 to n: for j=1 to n: d[i][j]=INF
for k=1 to n:
for i=1 to n:
for j=1 to n:
d[i][j] = min(d[i][j], d[i][k] + d[k][j])
//That *really* gives the shortest distance between every pair of nodes! :-)
//Now try all permutations
shortest = INF
for each permutation a[1],a[2],...a[k] of the 'mustpass' nodes:
shortest = min(shortest, d['start'][a[1]]+d[a[1]][a[2]]+...+d[a[k]]['end'])
print shortest
(Of course that's not real code, and if you want the actual path you'll have to keep track of which permutation gives the shortest distance, and also what the all-pairs shortest paths are, but you get the idea.)
It will run in at most a few seconds on any reasonable language :)
[If you have n nodes and k 'mustpass' nodes, its running time is O(n3) for the Floyd-Warshall part, and O(k!n) for the all permutations part, and 100^3+(12!)(100) is practically peanuts unless you have some really restrictive constraints.]
run Djikstra's Algorithm to find the shortest paths between all of the critical nodes (start, end, and must-pass), then a depth-first traversal should tell you the shortest path through the resulting subgraph that touches all of the nodes start ... mustpasses ... end
This is two problems... Steven Lowe pointed this out, but didn't give enough respect to the second half of the problem.
You should first discover the shortest paths between all of your critical nodes (start, end, mustpass). Once these paths are discovered, you can construct a simplified graph, where each edge in the new graph is a path from one critical node to another in the original graph. There are many pathfinding algorithms that you can use to find the shortest path here.
Once you have this new graph, though, you have exactly the Traveling Salesperson problem (well, almost... No need to return to your starting point). Any of the posts concerning this, mentioned above, will apply.
Actually, the problem you posted is similar to the traveling salesman, but I think closer to a simple pathfinding problem. Rather than needing to visit each and every node, you simply need to visit a particular set of nodes in the shortest time (distance) possible.
The reason for this is that, unlike the traveling salesman problem, a corn maze will not allow you to travel directly from any one point to any other point on the map without needing to pass through other nodes to get there.
I would actually recommend A* pathfinding as a technique to consider. You set this up by deciding which nodes have access to which other nodes directly, and what the "cost" of each hop from a particular node is. In this case, it looks like each "hop" could be of equal cost, since your nodes seem relatively closely spaced. A* can use this information to find the lowest cost path between any two points. Since you need to get from point A to point B and visit about 12 inbetween, even a brute force approach using pathfinding wouldn't hurt at all.
Just an alternative to consider. It does look remarkably like the traveling salesman problem, and those are good papers to read up on, but look closer and you'll see that its only overcomplicating things. ^_^ This coming from the mind of a video game programmer who's dealt with these kinds of things before.
This is not a TSP problem and not NP-hard because the original question does not require that must-pass nodes are visited only once. This makes the answer much, much simpler to just brute-force after compiling a list of shortest paths between all must-pass nodes via Dijkstra's algorithm. There may be a better way to go but a simple one would be to simply work a binary tree backwards. Imagine a list of nodes [start,a,b,c,end]. Sum the simple distances [start->a->b->c->end] this is your new target distance to beat. Now try [start->a->c->b->end] and if that's better set that as the target (and remember that it came from that pattern of nodes). Work backwards over the permutations:
[start->a->b->c->end]
[start->a->c->b->end]
[start->b->a->c->end]
[start->b->c->a->end]
[start->c->a->b->end]
[start->c->b->a->end]
One of those will be shortest.
(where are the 'visited multiple times' nodes, if any? They're just hidden in the shortest-path initialization step. The shortest path between a and b may contain c or even the end point. You don't need to care)
Andrew Top has the right idea:
1) Djikstra's Algorithm
2) Some TSP heuristic.
I recommend the Lin-Kernighan heuristic: it's one of the best known for any NP Complete problem. The only other thing to remember is that after you expanded out the graph again after step 2, you may have loops in your expanded path, so you should go around short-circuiting those (look at the degree of vertices along your path).
I'm actually not sure how good this solution will be relative to the optimum. There are probably some pathological cases to do with short circuiting. After all, this problem looks a LOT like Steiner Tree: http://en.wikipedia.org/wiki/Steiner_tree and you definitely can't approximate Steiner Tree by just contracting your graph and running Kruskal's for example.
Considering the amount of nodes and edges is relatively finite, you can probably calculate every possible path and take the shortest one.
Generally this known as the travelling salesman problem, and has a non-deterministic polynomial runtime, no matter what the algorithm you use.
http://en.wikipedia.org/wiki/Traveling_salesman_problem
The question talks about must-pass in ANY order. I have been trying to search for a solution about the defined order of must-pass nodes. I found my answer but since no question on StackOverflow had a similar question I'm posting here to let maximum people benefit from it.
If the order or must-pass is defined then you could run dijkstra's algorithm multiple times. For instance let's assume you have to start from s pass through k1, k2 and k3 (in respective order) and stop at e. Then what you could do is run dijkstra's algorithm between each consecutive pair of nodes. The cost and path would be given by:
dijkstras(s, k1) + dijkstras(k1, k2) + dijkstras(k2, k3) + dijkstras(k3, 3)
How about using brute force on the dozen 'must visit' nodes. You can cover all the possible combinations of 12 nodes easily enough, and this leaves you with an optimal circuit you can follow to cover them.
Now your problem is simplified to one of finding optimal routes from the start node to the circuit, which you then follow around until you've covered them, and then find the route from that to the end.
Final path is composed of :
start -> path to circuit* -> circuit of must visit nodes -> path to end* -> end
You find the paths I marked with * like this
Do an A* search from the start node to every point on the circuit
for each of these do an A* search from the next and previous node on the circuit to the end (because you can follow the circuit round in either direction)
What you end up with is a lot of search paths, and you can choose the one with the lowest cost.
There's lots of room for optimization by caching the searches, but I think this will generate good solutions.
It doesn't go anywhere near looking for an optimal solution though, because that could involve leaving the must visit circuit within the search.
One thing that is not mentioned anywhere, is whether it is ok for the same vertex to be visited more than once in the path. Most of the answers here assume that it's ok to visit the same edge multiple times, but my take given the question (a path should not visit the same vertex more than once!) is that it is not ok to visit the same vertex twice.
So a brute force approach would still apply, but you'd have to remove vertices already used when you attempt to calculate each subset of the path.
Given two places in a region, how can I compute a path that is of certain distance (the distance is given as a parameter) which connects the two places. The resulting path should ideally be composed of roads that are visited no more than once.
I have learnt that this problem can be viewed as a graph problem where the roads in the map represent the edges of the graph and the intersection/junctions represent the nodes of the graph. From this the problem can be simplified to finding a path of certain length for any two nodes in the graph.
One of my approaches to this problem can be broken into two steps:
Finding the shortest path between the two nodes (using A* or a similar algorithm).
Extending/Expanding the shortest path that is returned from A* so that it's long enough.
Now, I am not exactly sure if this approach is worth pursuing or if a better approach exists? Also, I've not come across any methods that would allow me to expand the path - are there any specific techniques that can achieve this?
My idea is to use an ad-hoc heuristic function. The goal state should be reaching the destination with a path long L. (So if you reach the destination with a too short path the goal test is not satisfied and the algorithm will continue).
#goal state
if (state == dest and curr_length == required_length)
return path
For every other node the heuristic must give a value that is a combination of the expected distance from the destination and the required length that must still be travelled.
h(state, curr_length):
dist = manhattan_distance(state, goal)
#must use the abs instead if curr_length > required_length this value becomes
#negative and this node gets a wrong result
len = abs(required_length - curr_length)
return dist + len
I'm not sure if this heuristic is consistent or not, but you can try with something like this and check the results.
If this search work it should also be optimal.
I have a directed acyclic weighted graph which I want to traverse.
The constraints for a valid solution route are:
The sum of the weights of all edges traversed in the route must be the highest possible in the graph, taking in mind the second constraint.
Exactly N vertices must have been visited in the chosen route (including the start and end vertex).
Typically the graph will have a high amount of vertices and edges, so trying all possibilities is not an option, and requires quite an efficient algorithm.
Looking for some pointers or a suitable algorithm for this problem. I know the first condition is easily fulfilled using Dijkstra's algorithm, but I am not sure how to incorporate the second condition, or even where to begin to look.
Please let me know if any additional information is needed.
I'm not sure if you are interested in any path of length N in the graph or just path between two specific vertices; I suspect the latter, but you did not mention that constraint in your question.
If the former, the solution should be a trivial Dijkstra-like algorithm where you sort all edges by their potential path value that starts at the edge weight and gets adjusted by already built adjecent paths. In each iteration, take the node with the best potential path value and add it to an adjecent path. Stop when you get a path of length N (or longer that you cut off at the sides). There are some other technical details esp. wrt. creating long paths, but I won't go into details as I suspect this is not what you are interested in. :-)
If you have fixed source and sink, I think there is no deep magic involved - just run a basic Dijkstra where a path will be associated with each vertex added to the queue, but do not insert vertices with path length >= N into the queue and do not insert sink into the queue unless its path length is N.