Dijkstra's algorithm in Graphs.jl package of Julia - julia

From the documentation of Graphs.jl:
Dijkstra’s Algorithm
dijkstra_shortest_paths(graph, edge_dists, source[, visitor])
Performs Dijkstra’s algorithm to find shortest paths to all vertices from input sources.
Parameters:
graph – The input graph
edge_dists – The vector of edge distances or an edge property inspector.
source – The source vertex (or vertices)
visitor – An visitor instance
Returns:
An instance of DijkstraStates that encapsulates the results.
It says source is the source vertex, or vertices. Does it mean that this function can deal with multiple origins?
I am interested in finding shortest paths from multiple origins to multiple destinations. Can I do it using this function? Then, what the structure of parents array from the result will be?

Related

Spanning tree with shortest path between two points

I have weighted undirected graph. I need to find spanning tree with minimal possible cost, so that distance between point A and B will be as low as possible.
For example, I have this graph: graph.
Minimal distance between A and B is 2.
Minimal spanning tree would look like this. But that would make distance between A and B = 3.
Right now I am doing this:
Find distance between AB in graph, using BFS.
Find all paths between AB with length from step 1 using DFS.
Generate spanning tree from every path from step 2.
Compare them and get minimal one.
Everything is OK until I got graph with A-B distance = 12.
Second step then take too much time. Is there any faster way of doing this? Thanks.
The fastest/most efficient way to solve this problem is to use Dijkstra's Shortest Path algorithm. This is a greedy algorithm that has the following basic structure:
1-all nodes on the graph start "infinity" distance apart
2-start with your first node (node A in your example) and keep track of each edge weight to get from this node A to each of its neighbors.
3-Choose the shortest current edge and follow it to your next node, let's call it node C for now
4-Now, for each of C's neighbors, compare the current distance (including infinity if applicable) with the sum of A's edge to C and C's shortest edge to the current neighbor. If it is shorter than the current distance, update it to the new distance.
5-Continue this process until all nodes have been visited and you reach the node you were looking for the shortest path to (i.e. B in your example)
This is a pretty efficient way of finding the shortest path between two nodes, with a running time of O(V^2), not O(nlogn) as mentioned above. As you can see, by making this a greedy algorithm, we are constantly choosing the optimal solution based on the available local information, and therefore we will never have to go back and change our decisions.
This also eliminates the need for a BFS and a DFS like in your example. Hope this helps!
While your step two is correct, I think that the problem is that you are doing too many operations.
You are doing both a BFS and a DFS which is going to be very costly. Instead, what I would recommend doing is using one of several different traversal techniques that will minimize in the computational costs.
This is a common problem to find the shortest path, and one of the popular solutions is Dijkstra's algorithm. Here is an article that expounds on this topic. https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
In short, what this algorithm does, is it takes the starting point A, and then it generates the minimal spanning tree until point B is hit, then there is a single path in which A can get to B, and that is the shortest path.
Both this and your algorithm both run in O(nlogn), but in practice this solution can be thought of as running a single BFS instead of both a BFS and a DFS.

Efficient way to find path between any two nodes in a undirected graph

I got an undirected graph with such that all the edges with same weight and all the vertices are connected. I want to find path between any given pair of vertices.
A less efficient solution is:
To perform BFS starting with one of the vertices, keep track of the visited vertices till the destination vertex is reached. This would perform in O(V + E). But this will have to be done for every pair of vertices given. Hence if there are M number of queries to find path, complexity would be O(M *(E+V)).
Can we do it better? Is it possible to leverage the output a BFS and solve the rest?
As you state that the graph is connected, it is not necessary to call a searching algorithm for the graph more than once. It is sufficient to use a single call to BFS (or DFS, this should make no major difference) to generate a spanning tree for the input. As from your problem statement it is apparently not necessary to find a shortest path between the vertices, any pair (a,b) of vertices is connected via the path from a to the root r of the spanning tree and the path from r to b.
The runtime would be O(V+E), namely the runtime of te searching algorithm; an additional computational cost might be necessary for the generation of the actual paths themselves.

Union-Find algorithm and determining whether an edge belongs to a cycle in a graph

I'm reading a book about algorithms ("Data Structures and Algorithms in C++") and have come across the following exercise:
Ex. 20. Modify cycleDetectionDFS() so that it could determine whether a particular edge is part of a cycle in an undirected graph.
In the chapter about graphs, the book reads:
Let us recall from a preceding section that depth-first search
guaranteed generating a spanning tree in which no elements of edges
used by depthFirstSearch() led to a cycle with other element of edges.
This was due to the fact that if vertices v and u belonged to edges,
then the edge(vu) was disregarded by depthFirstSearch(). A problem
arises when depthFirstSearch() is modified so that it can detect
whether a specific edge(vu) is part of a cycle (see Exercise 20).
Should such a modified depth-first search be applied to each edge
separately, then the total run would be O(E(E+V)), which could turn
into O(V^4) for dense graphs. Hence, a better method needs to be
found.
The task is to determine if two vertices are in the same set. Two
operations are needed to implement this task: finding the set to which
a vertex v belongs and uniting two sets into one if vertex v belongs
to one of them and w to another. This is known as the union-find
problem.
Later on, author describes how to merge two sets into one in case an edge passed to the function union(edge e) connects vertices in distinct sets.
However, still I don't know how to quickly check whether an edge is part of a cycle. Could someone give me a rough explanation of such algorithm which is related to the aforementioned union-find problem?
a rough explanation could be checking if a link is a backlink, whenever you have a backlink you have a loop, and whenever you have a loop you have a backlink (that is true for directed and undirected graphs).
A backlink is an edge that points from a descendant to a parent, you should know that when traversing a graph with a DFS algorithm you build a forest, and a parent is a node that is marked finished later in the traversal.
I gave you some pointers to where to look, let me know if that helps you clarify your problems.

What's the difference between uniform-cost search and Dijkstra's algorithm?

I was wondering what's the difference between uniform-cost search and Dijkstra's algorithm. They seem to be the same algorithm.
Dijkstra's algorithm, which is perhaps better-known, can be regarded
as a variant of uniform-cost search, where there is no goal state and
processing continues until all nodes have been removed from the
priority queue, i.e. until shortest paths to all nodes (not just a
goal node) have been determined
http://en.wikipedia.org/wiki/Uniform-cost_search#Relationship_to_other_algorithms
Dijkstra's algorithm searches for shortest paths from root to every other node in a graph, whereas uniform-cost searches for shortest paths in terms of cost to a goal node.
Also, uniform cost has less space requirements, whereas the priority queue is filled "lazily" opposed to Dijkstra's, which adds all nodes to the queue on start with an infinite cost.
Compilation of other answers by NotAUser, dreaMone and Bruno Calza
Dijkstra's Algorithm finds the shortest path from the root node to every other node. uniform cost searches for shortest paths in terms of cost from the root node to a goal node. Uniform Cost Search is Dijkstra's Algorithm which is focused on finding a single shortest path to a single finishing point rather than the shortest path to every point.
UCS does this by stopping as soon as the finishing point is found. For Dijkstra, there is no goal state and processing continues until all nodes have been removed from the priority queue, i.e. until shortest paths to all nodes (not just a goal node) have been determined.
UCS has fewer space requirements, where the priority queue is filled gradually as opposed to Dijkstra's, which adds all nodes to the queue on start with an infinite cost.
As a result of the above points, Dijkstra is more time consuming than UCS
UCS is usually formulated on trees while Dijkstra is used on general graphs
Djikstra is only applicable in explicit graphs where the entire graph is given as input. UCS starts with the source vertex and gradually traverses the necessary parts of the graph. Therefore, it is applicable for both explicit graphs and implicit graphs (where states/nodes are generated).
There's a paper that talk about the similarities and differences about both.
http://www.aaai.org/ocs/index.php/SOCS/SOCS11/paper/view/4017/4357
The main difference is that Dijkstra's algorithm is defined when numbers of vertices is finite. It says to put all the vertices in a queue. But we can not put all the vertices in a queue when numbers of vertices tend to infinite. Uniform Cost Search is defined in a situation like this, where numbers of vertices are unknown.

Traversal of directed acyclic weighted graph with constraints

I have a directed acyclic weighted graph which I want to traverse.
The constraints for a valid solution route are:
The sum of the weights of all edges traversed in the route must be the highest possible in the graph, taking in mind the second constraint.
Exactly N vertices must have been visited in the chosen route (including the start and end vertex).
Typically the graph will have a high amount of vertices and edges, so trying all possibilities is not an option, and requires quite an efficient algorithm.
Looking for some pointers or a suitable algorithm for this problem. I know the first condition is easily fulfilled using Dijkstra's algorithm, but I am not sure how to incorporate the second condition, or even where to begin to look.
Please let me know if any additional information is needed.
I'm not sure if you are interested in any path of length N in the graph or just path between two specific vertices; I suspect the latter, but you did not mention that constraint in your question.
If the former, the solution should be a trivial Dijkstra-like algorithm where you sort all edges by their potential path value that starts at the edge weight and gets adjusted by already built adjecent paths. In each iteration, take the node with the best potential path value and add it to an adjecent path. Stop when you get a path of length N (or longer that you cut off at the sides). There are some other technical details esp. wrt. creating long paths, but I won't go into details as I suspect this is not what you are interested in. :-)
If you have fixed source and sink, I think there is no deep magic involved - just run a basic Dijkstra where a path will be associated with each vertex added to the queue, but do not insert vertices with path length >= N into the queue and do not insert sink into the queue unless its path length is N.

Resources