there are 3 columns in the original data frame: id, type and rank. Now I want to create a new data frame having each possible value of type as a single column (see the small example below, the original data contains >100.000 rows and 30 types)
data1
id type rank
x a 1
y a 2
z a 3
x b 1
z b 2
y c 1
data2
id a b c
x 1 1 NA
y 2 NA 1
z 3 2 NA
That's what I have done so far:
for (i in (1:nrow(data1))) {
dtype <- data[i,2]
if (any(data2$id == data1[i,1], na.rm = TRUE)) {
row <- grep(data1[i,1],data2$id)
data2[row,c(dtype)] <- data1[i,3]
} else {
data2[nrow(data2)+1,1] <- as.character(data1[i,1])
data2[nrow(data2),c(dtype)] <- data1[i,3]
}
}
This works (I hope this example explains what I am doing), but it is quite slow. Do you have any hints how I can optimize this algorithm?
Using the function by the word mentioned in your question, you can just use reshape from base R:
> reshape(mydf, direction = "wide", idvar = "id", timevar = "type")
id rank.a rank.b rank.c
1 x 1 1 NA
2 y 2 NA 1
3 z 3 2 NA
Here's an example from the tidyr package.
library("tidyr")
library("dplyr")
data2<-
data1 %>% spread(type, rank)
id a b c
1 x 1 1 NA
2 y 2 NA 1
3 z 3 2 NA
Here's using data.table:
require(data.table)
ans = dcast.data.table(setDT(data1), id ~ type)
ans
# id a b c
# 1: x 1 1 NA
# 2: y 2 NA 1
# 3: z 3 2 NA
Related
I want to do something VERY similar to this question: how to use merge() to update a table in R
but instead of just one column being the index, I want to match the new values on an arbitrary number of columns >=1.
foo <- data.frame(index1=c('a', 'b', 'b', 'd','e'),index2=c(1, 1, 2, 3, 2), value=c(100,NA, 101, NA, NA))
Which has the following values
foo
index1 index2 value
1 a 1 100
2 b 1 NA
3 b 2 101
4 d 3 NA
5 e 2 NA
And the data frame bar
bar <- data.frame(index1=c('b', 'd'),index2=c(1,3), value=c(200, 201))
Which has the following values:
bar
index1 index2 value
1 b 1 200
2 d 3 201
merge(foo, bar, by='index', all=T)
It results in this output:
Desired output:
foo
index1 index2 value
1 a 1 100
2 b 1 200
3 b 2 101
4 d 3 201
5 e 2 NA
I think you don't need a merge but more to rbind and filter them later. Here I am using data.table for sugar syntax.
dx <- rbind(bar,foo)
library(data.table)
setDT(dx)
## note this can be applied to any number of index
setkeyv(dx,grep("index",names(dx),v=T))
## using unqiue to remove all duplicated
## here it will remove the duplicated with missing values which is the
## expected behavior
unique(dx)
# index1 index2 value
# 1: b 1 200
# 2: b 2 101
# 3: d 3 201
# 4: a 1 100
# 5: e 2 NA
you can be more explicit and filter your rows by group of indexs:
dx[,ifelse(length(value)>1,value[!is.na(value)],value),key(dx)]
Here's an R base approach
> temp <- merge(foo, bar, by=c("index1","index2"), all=TRUE)
> temp$value <- with(temp, ifelse(is.na(value.x) & is.na(value.y), NA, rowSums(temp[,3:4], na.rm=TRUE)))
> temp <- temp[, -c(3,4)]
> temp
index1 index2 value
1 a 1 100
2 b 1 200
3 b 2 101
4 d 3 201
5 e 2 NA
You can use some dplyr voodoo to produce what you want. The following subsets the data by unique combinations of "index1" and "index2", and checks the contents of "value" for each subset. If "value" has any non-NA values, those are returned. If only an NA value is found, that is returned.
Seems a little specific, but it seems to do what you want!
library(dplyr)
df.merged <- merge(foo, bar, all = T) %>%
group_by(index1, index2) %>%
do(
if (any(!is.na(.$value))) {
return(subset(., !is.na(value)))
} else {
return(.)
}
)
Output:
index1 index2 value
<fctr> <fctr> <dbl>
1 a 1 100
2 b 1 200
3 b 2 101
4 d 3 201
5 e 2 NA
You can specify as many columns as you want with merge:
out <- merge(foo, bar, by=c("index1", "index2"), all.x=TRUE)
new <- apply(out[,3:4], 1, function(x) sum(x, na.rm=TRUE))
new <- ifelse(is.na(out[,3]) & is.na(out[,4]), NA, new)
out <- cbind(out[,1:2], new)
I use aggregate function to get count by group. The aggregate function only returns count for groups if count > 0. This is what I have
dt <- data.frame(
n = c(1,2,3,4,5,6),
id = c('A','A','A','B','B','B'),
group = c("x","x","y","x","x","x"))
applying the aggregate function
my.count <- aggregate(n ~ id+group, dt, length)
now see the results
my.count[order(my.count$id),]
I get following
id group n
1 A x 2
3 A y 1
2 B x 3
I need the following (the last row has zero that i need)
id group n
1 A x 2
3 A y 1
2 B x 3
4 B y 0
thanks for you help in in advance
We can create another column 'ind' and then use dcast to reshape from 'long' to 'wide', specifying the fun.aggregate as length and drop=FALSE.
library(reshape2)
dcast(transform(dt, ind='n'), id+group~ind,
value.var='n', length, drop=FALSE)
# id group n
#1 A x 2
#2 A y 1
#3 B x 3
#4 B y 0
Or a base R option is
as.data.frame(table(dt[-1]))
You can merge your "my.count" object with the complete set of "id" and "group" columns:
merge(my.count, expand.grid(lapply(dt[c("id", "group")], unique)), all = TRUE)
## id group n
## 1 A x 2
## 2 A y 1
## 3 B x 3
## 4 B y NA
There are several questions on SO that show you how to replace NA with 0 if that is required.
aggregate with drop=FALSE worked for me.
my.count <- aggregate(n ~ id+group, dt, length, drop=FALSE)
my.count[is.na(my.count)] <- 0
my.count
# id group n
# 1 A x 2
# 2 B x 3
# 3 A y 1
# 4 B y 0
If you are interested in frequencies only, you create with your formula a frequency table an turn it into a dataframe:
as.data.frame(xtabs(formula = ~ id + group, dt))
Obviously this won't work for other aggregate functions. I'm still waiting for dplyr's summarise function to let the user decide whether zero-groups are kept or not. Maybe you can vote for this improvement here: https://github.com/hadley/dplyr/issues/341
Suppose I have a list of data.frames:
list <- list(A=data.frame(x=c(1,2),y=c(3,4)), B=data.frame(x=c(1,2),y=c(7,8)))
I want to combine them into one data.frame like this:
data.frame(x=c(1,2,1,2), y=c(3,4,7,8), group=c("A","A","B","B"))
x y group
1 1 3 A
2 2 4 A
3 1 7 B
4 2 8 B
I can do in this way:
add_group_name <- function(df, group) {
df$group <- group
df
}
Reduce(rbind, mapply(add_group_name, list, names(list), SIMPLIFY=FALSE))
But I want to know if it's possible to get the name inside the lapply loop without the use of names(list), just like this:
add_group_name <- function(df) {
df$group <- ? #How to get the name of df in the list here?
}
Reduce(rbind, lapply(list, add_group_name))
I renamed list to listy to remove the clash with the base function. This is a variation on SeƱor O's answer in essence:
do.call(rbind, Map("[<-", listy, TRUE, "group", names(listy) ) )
# x y group
#A.1 1 3 A
#A.2 2 4 A
#B.1 1 7 B
#B.2 2 8 B
This is also very similar to a previous question and answer here: r function/loop to add column and value to multiple dataframes
The inner Map part gives this result:
Map("[<-", listy, TRUE, "group", names(listy) )
#$A
# x y group
#1 1 3 A
#2 2 4 A
#
#$B
# x y group
#1 1 7 B
#2 2 8 B
...which in long form, for explanation's sake, could be written like:
Map(function(data, nms) {data[TRUE,"group"] <- nms; data;}, listy, names(listy) )
As #flodel suggests, you could also use R's built in transform function for updating dataframes, which may be simpler again:
do.call(rbind, Map(transform, listy, group = names(listy)) )
I think a much easier approach is:
> do.call(rbind, lapply(names(list), function(x) data.frame(list[[x]], group = x)))
x y group
1 1 3 A
2 2 4 A
3 1 7 B
4 2 8 B
Using plyr:
ldply(ll)
.id x y
1 A 1 3
2 A 2 4
3 B 1 7
4 B 2 8
Or in 2 steps :
xx <- do.call(rbind,ll)
xx$group <- sub('([A-Z]).*','\\1',rownames(xx))
xx
x y group
A.1 1 3 A
A.2 2 4 A
B.1 1 7 B
B.2 2 8 B
I would like to create a numeric indicator for a matrix such that for each unique element in one variable, it creates a sequence of the length based on the element in another variable. For example:
frame<- data.frame(x = c("a", "a", "a", "b", "b"), y = c(3,3,3,2,2))
frame
x y
1 a 3
2 a 3
3 a 3
4 b 2
5 b 2
The indicator, z, should look like this:
x y z
1 a 3 1
2 a 3 2
3 a 3 3
4 b 2 1
5 b 2 2
Any and all help greatly appreciated. Thanks.
No ave?
frame$z <- with(frame, ave(y,x,FUN=seq_along) )
frame
# x y z
#1 a 3 1
#2 a 3 2
#3 a 3 3
#4 b 2 1
#5 b 2 2
A data.table version could be something like below (thanks to #mnel):
#library(data.table)
#frame <- as.data.table(frame)
frame[,z := seq_len(.N), by=x]
My original thought was to use:
frame[,z := .SD[,.I], by=x]
where .SD refers to each subset of the data.table split by x. .I returns the row numbers for an entire data.table. So, .SD[,.I] returns the row numbers within each group. Although, as #mnel points out, this is inefficient compared to the other method as the entire .SD needs to be loaded into memory for each group to run this calculation.
Another approach:
frame$z <- unlist(lapply(rle(as.numeric(frame[, "x"]))$lengths, seq_len))
library(dplyr)
frame %.%
group_by(x) %.%
mutate(z = seq_along(y))
You can split the data.frame on x, and generate a new id column based on that:
> frame$z <- unlist(lapply(split(frame, frame$x), function(x) 1:nrow(x)))
> frame
x y z
1 a 3 1
2 a 3 2
3 a 3 3
4 b 2 1
5 b 2 2
Or even more simply using data.table:
library(data.table)
frame <- data.table(frame)[,z:=1:nrow(.SD),by=x]
Try this where x is the column by which grouping is to be done and y is any numeric column. if there are no numeric columns use seq_along(x), say, in place of y:
transform(frame, z = ave(y, x, FUN = seq_along))
This is a more complex follow-up to my previous question. The answer there was to use a matrix, but that doesn't work with data frames having values of different modes.
I want to combine data frames of different sizes, with character and integer columns, and calculate their sum depending on multiple conditions.
Conditions
sums are only calculated for those rows that have a matching "Name"-value
sums are calculated for matching column names only
if a cell in df4 is not 0 and not NA, the sum should be df3 + df4
else the sum should be df1 + df2 + df3
Example
> df1 <- data.frame(Name=c("Joe","Ann","Lee","Dan"), "1"=c(0,1,5,2), "2"=c(3,1,0,0), "3"=c(2,0,2,2), "4"=c(2,1,3,4))
> df1
Name X1 X2 X3 X4
1 Joe 0 3 2 2
2 Ann 1 1 0 1
3 Lee 5 0 2 3
4 Dan 2 0 2 4
> df2 <- data.frame(Name=c("Joe","Ann","Ken"), "1"=c(3,4,1), "2"=c(2,3,0), "3"=c(2,4,3))
> df2
Name X1 X2 X3
1 Joe 3 2 2
2 Ann 4 3 4
3 Ken 1 0 3
> df3 <- data.frame(Name=c("Lee","Ben"), "1"=c(1,3), "2"=c(3,4), "3"=c(4,3))
> df3
Name X1 X2 X3
1 Lee 1 3 4
2 Ben 3 4 3
The condition depends on this frame:
> df4 <- data.frame(Name=c("Lee","Ann","Dan"), "1"=c(6,0,NA), "2"=c(0,0,4), "3"=c(0,NA,0))
> df4
Name X1 X2 X3
1 Lee 6 0 0
2 Ann 0 0 NA
3 Dan NA 4 0
With the above examples, this is the expected result (* values depend on df4):
> dfsum
Name X1 X2 X3 X4
1 Joe 3 5 4 2
2 Ann 5 4 4 1
3 Lee 7* 3 6 3
4 Dan 2 4* 2 4
5 Ken 1 0 3 NA
6 Ben 3 4 3 NA
Possible steps?
First expand df1, df2, df3, df4 to 5 columns and 6 rows, fill missing data with NA.
Then for each data frame:
sort rows by "Name"
separate "Name" column from "X1"..."X4"
transform "X1"..."X4" columns to matrix
calculate sums of the matrices like in the answer to my other question but with the additional condition 1
transform result matrix to data frame
cbind the "Name" column with the result data frame
How can this be done in R?
Solution
#Ricardo Saporta's solution works with little changes:
Add , padValue=NA) in the four addCols().
As answered here, replace the definitions of sumD3D4 and dtsum with:
plus <- function(x) {
if(all(is.na(x))){
c(x[0],NA)} else {
sum(x,na.rm = TRUE)}
}
sumD3D4 <- setkey(rbind(dt3, dt4)[,lapply(.SD, plus), by = Name], "Name")
dtsum <- setkey(rbind(dt1, dt2, dt3)[, lapply(.SD, plus), by=Name], "Name")
If you use data.table instead of data.frame, you could use its by=xxxx feature, to add by name.
The code below should give you your expected results.
Please note that I am padding the data.tables with extra empty columns. However, we compute condTrue prior to then.
library(data.table)
dt1 <- data.table(df1)
dt2 <- data.table(df2)
dt3 <- data.table(df3)
dt4 <- data.table(df4)
# make sure all dt's have the same columns
#-----------------------------------------#
# identify which dt4 satisfy the condition
condTrue <- as.data.table(which(!(is.na(dt4) | dt4==0), arr.ind=TRUE))
# ignore column "Name" from dt4
condTrue <- condTrue[col>1]
# convert from (row, col) index to ("Name", columnName)
condTrue <- data.table(Name=dt4[condTrue$row, Name], colm=names(dt4)[condTrue$col], key="Name")
# First make a list of all the unique column names
allColumnNames <- unique(c(names(dt1), names(dt2), names(dt3), names(dt4)))
# add columns as necessary, using addCols (definted below)
addCols(dt1, allColumnNames)
addCols(dt2, allColumnNames)
addCols(dt3, allColumnNames)
addCols(dt4, allColumnNames)
sumD3D4 <- setkey(rbind(dt3, dt4)[, lapply(.SD, sum), by=Name], "Name")
dtsum <- setkey(rbind(dt1, dt2, dt3)[, lapply(.SD, sum), by=Name], "Name")
for (Nam in condTrue$Name) {
colsRepl <- condTrue[.(Nam)]$colm
valsRepl <- unlist(sumD3D4[.(Nam), c(colsRepl), with=FALSE])
dtsum[.(Nam), c(colsRepl) := as.list(valsRepl)]
}
dtsum
# Name 1 2 3 4
# 1: Ann 5 4 4 1
# 2: Ben 3 4 3 0
# 3: Dan 2 4 2 4
# 4: Joe 3 5 4 2
# 5: Ken 1 0 3 0
# 6: Lee 7 3 6 3
addCols <- function(x, cols, padValue=0) {
# adds to x any columns that are in cols but not in x
# Returns TRUE if columns were added
# FALSE if no columns added
colsMissing <- setdiff(cols, names(x))
# grab the actual DT name that was passed to function
dtName <- as.character(match.call()[2])
if (length(colsMissing)) {
get(dtName, envir=parent.frame(1))[, c(colsMissing) := padValue]
return(TRUE)
}
return(FALSE)
}