How to repositionate a bouncing ball after it passed throug a surface - math

I have a bouncing ball which can collide lines with random slope. The ball pass through the lines of a bit and i need to set back the ball at a "radius" distance from the line.
Ball (with variables x, y and radius) travels at speedX and speedY (obtained from vectors directionX and directionY multiplied for a variable) and i can know the distance (dist) between the center and the line so i can know how many pixels the ball passed through the line
Think that in the example the ball passed 10 pixels (radius - dist) after the line, i need to set back the center of the ball 10 pixels in the opposite vector (directionX directionY). My question is:
How can i calculate how to split those n pixels between x and y so i can subtract them from the center coordinates?

I can imagine 4 different resolutions of what you have, and it is unclear which one you want.
Here they are, where the black arrow is the movement of the centre of the ball between the frame before collision and the frame you are asking how to draw.
A) the situation which you have now.
pro : simple
con : ball is in a physically unacceptable position
B) you compute where the ball should be after having bounced (assuming an elastic chock)
pro : most accurate
con : you don't have a frame with the ball in contact with the surface (but do you care ?).
C) The position of the ball is A, brought back to being tangent at the surface, with a correction that is orthogonal to said surface
pro : conserves accuracy in direction parallel to surface
con : centre of the ball not on the reflected line (i.e. we take liberties with Descartes' law)
D) The ball is still on the incoming line, but stopped when it is tangent to the surface.
pro : only the speed/timing is messed with
con : err.... out of ideas here. Still not as precise as B.
Well, disregarding all the drawings, it is much easier to take only the centre of the ball, and consider it hits a line that is at 'radius' of the real surface (and parallel to it), so we only have mechanics for a single point. Thus from the previous image, we get the formulation in terms of the following red objects :
So what do we need to do all this ?
The undisturbed trajectory starts at point S, ends at point E (the endpoint of situation A). We will call C the collision point between both lines (red one and trajectory, thus the endpoint of trajectory D).
I will assume we are always in the case of a collision, thus the point of intersection C between the undisturbed trajectory and the surface always exists.
You will also need the vector u that is perpendicular to the surface. Be sure to take a unit vector that points towards the side where the ball is. Thus if your slope has an equation ax+by+c=0, start with the vector ( a/sqrt(a*a+b*b) , b/sqrt(a*a+b*b) ) and multiply both coordinates by -1 if it points to the wrong side.
Then, to shift the line by a distance r in the direction of u, you want the equation a(x-r*u.x)+b(y-r*u.y)+c=0 thus ax+by+c-r*(a*u.x+b*u.y)=0
So if r is the radius and ax+by+c=0 your surface, the red line's equation is ax+by+c+r*sqrt(a*a+b*b)=0
or -r if the ball is beneath the line.
I will write PQ the vector starting at point P and ending at point Q, thus coordinates of said vector will be (Q.x - P.x, Q.y - P.y) and a . between two vectors will mean a scalar product.
So you can express SE in terms of the variables you named directionX, directionY and dist.
A) Move center by SE. Yay, finished !
B) Get C. Move center by SE - 2 * (CE . u) * u : thus the total move, but removing twice the normal component of CE that goes beyond the surface, effectively mirroring the CE vector by that surface.
C) Get C. Move center by SE - (CE . u) * u : the same, but remove the normal component of CE only once, effectively projecting the CE vector on the red line.
D) Get C. Move center by SC.

Related

Moving an object diagonally inside a square

I am stuck on a particular problem. I am learning on how to create a very basic game, where a ball will travel diagonally from either top left corner of a square or a rectangular down to the bottom right corner in a straight line (As shown in Fig 1 & 2). Now I know that the ball x and y position will both need to be changed frame by frame but I am unsure on how to go about this.
enter image description here
Math is not my strong point and I am unsure how do I calculate the exact route, especially since both the square and rectangle will have a different angles. Are there any math formulas I can use to calculate the diagonal line and by how much each of the x and y coordinates of the ball will need to be adjusted frame by frame.
From the research that I have done I think that I will most likely need to calculate the angle using the sin or cos functions but I am not sure how everything fits together. Have been using https://www.mathsisfun.com/sine-cosine-tangent.html to try and learn more.
I am planning on starting to code this but would really appreciate answers to these basic questions. I am trying to learn both the programming and the mathematical aspect at the same time and I feel that this approach would be the best fit.
Many Thanks for any suggestions/help, I would really appreciate it.
Since it's rectangular, just calculate the slope: rise (Y) / run (X). That will give you how much to increase the object's location in each direction per frame. Depending on how fast or slow you want the object to move, you'll need to apply some modifier to that (e.g., if you want the object to move twice as fast, you'll need to multiple 2 by the change in a particular direction before you actually change the object's location.
For square :
If you are using Frame or JFrame, you have coordinate with you.
You can move ball from left top to right down as follow ->
Suppose ur top left corner is at (0,0), add 1in both coordinate until you reach right bottom corner.
U can do this using for loop
You don't technically need the angle for this mapping. You know that the formula for a line is "y = m * x + b." I presume that you can calculate m,b. If not, let me know.
Given that - you can simply increment x based on anything you like (timer, event, etc. ). You can place your incremented x into the equation above to get your respective y.
Now, that won't be quite enough as you are dealing with pixels instead of actual numbers. For example, lest assume that in your game x/y are in feet. You will need to know how many pixels represent a foot. Then when you draw to the screen you adjust your coordinates by dividing by pixels per foot.
So...
1. Calculate your m and b for your path.
2. Use a timer. At each tick, adjust your x value
3. Use your x value to calculate your y value
4. Divide x and y by a scaling number
5. Use the new scaled x and y to plot your object
Now...There are all kinds of tricks you can play with the math, but that should get you started.
Let's left bottom corner of rectangle (or square) has coordinates (x0, y0), and right top corner (x1, y1). Then diagonal has equation
X(t) = x0 + t * (x1 - x0)
Y(t) = y0 + t * (y1 - y0)
where t is parameter in range 0..1. Point at t=0 corresponds to (x0, y0), at t=1 to (x1, y1), and at t=0.5 - to the center of rectangle. So all you need is vary parameter t and calculate position.
When your object will move with constant absolute speed in arbitrary direction, use horizontal and vertical components of velocity vx and vy. At every moment get coordinates as x_new = x_old + delta_time * vx. Note that reflection from vertical edge just changes horizontal component of velocity 'vx = - vx' and so on.

Finding point of collision (moving circles + time)

For two circles moving linearly, it's easy enough to calculate the time of the collision: http://twobitcoder.blogspot.com/2010/04/circle-collision-detection.html
This assumes that the circles have fixed starting points, and fixed movement paths, and calculates the time of the collision.
Is it possible to do it the other way around:
Circle 1: Starting point X1,Y1 velocity VX1,VY1 (fixed starting point, fixed linear movement path), radius R1
Circle 2: Starting point X2,Y2 velocity scalar (1m/sec, etc) (fixed starting point, fixed speed, unknown direction), radius R2
Is it possible to determine the collision position of the two circles for a minimum travel time?
I.E.
Circle 1 starts at 0,0 and moves at speed 1,0 (1 unit to the right per time)
Circle 2 starts at 5,5 and can move 1 unit per time
What would the collision position be (or the VX2,VY2 circle 2 would need to move in) in order for the 2 circles to collide at the lowest time T.
Radius of both circles is 1
In this example, a solution would be somewhere around Circle 1 being at point 3,0 at time 3. The question feels fairly complex as you have unknown variables: collision point, collision time, VX2, VY2. Although VX2 and VY2 would be constrained by |VX1|+|VX2| = 1.
The reason for the question is to tell circle 2 where it should move to in order to 'catch' circle 1.
The brute force solution would be to check the position of circle 1 at every time interval, and calculate if circle 2 would collide with circle 1 if told to move to that point - but you could miss collision points of the circles were moving fast, or get a sub-optimal point, etc.
There are two keys to solving this simply:
Firstly the points reachable from x2 in time t form a circle centered on x2.
Secondly the first moment that the circles can touch they must be touching tangentially.
These combine to tell us that the points x2(0), x2(T), the contact point and x1(T) are all colinear.
If we draw a diagram showing this we get a single quadratic equation in t:
|| x2(0) - x1(0) - v1 t ||^2 = (r1+r2+t)^2
Which can easily be solved for t.
To get the direction for v2 we just need to use the unit vector in the direction x1(T)-x2(0).

circles and triangles problem

I have an interesting problem here I've been trying to solve for the last little while:
I have 3 circles on a 2D xy plane, each with the same known radius. I know the coordinates of each of the three centers (they are arbitrary and can be anywhere).
What is the largest triangle that can be drawn such that each vertex of the triangle sits on a separate circle, what are the coordinates of those verticies?
I've been looking at this problem for hours and asked a bunch of people but so far only one person has been able to suggest a plausible solution (though I have no way of proving it).
The solution that we have come up with involves first creating a triangle about the three circle centers. Next we look at each circle individually and calculate the equation of a line that passes through the circle's center and is perpendicular to the opposite edge. We then calculate two intersection points of the circle. This is then done for the next two circles with a result of 6 points. We iterate over the 8 possible 3 point triangles that these 6 points create (the restriction is that each point of the big triangle must be on a separate circle) and find the maximum size.
The results look reasonable (at least when drawn out on paper) and it passes the special case of when the centers of the circles all fall on a straight line (gives a known largest triangle). Unfortunate i have no way of proving this is correct or not.
I'm wondering if anyone has encountered a problem similar to this and if so, how did you solve it?
Note: I understand that this is mostly a math question and not programming, however it is going to be implemented in code and it must be optimized to run very fast and efficient. In fact, I already have the above solution in code and tested to be working, if you would like to take a look, please let me know, i chose not to post it because its all in vector form and pretty much impossible to figure out exactly what is going on (because it's been condensed to be more efficient).
Lastly, yes this is for school work, though it is NOT a homework question/assignment/project. It's part of my graduate thesis (abet a very very small part, but still technically is part of it).
Thanks for your help.
Edit: Heres a new algorithm that i came up with a little while ago.
Starting at a circle's centre, draw a line to the other two centres. Calculate the line that bisects the angle created and calculate the intersections between the circle and the line that passes through the centre of your circle. You will get 2 results. Repeat this for the other two circles to get a total of 6 points. Iterate over these 6 points and get 8 possible solutions. Find the maximum of the 8 solutions.
This algorithm will deal with the collinear case if you draw your lines in one "direction" about the three points.
From the few random trials i have attempted using CAD software to figure out the geometries for me, this method seems to outperform all other methods previously stated However, it has already been proven to not be an optimal solution by one of Victor's counter examples.
I'll code this up tomorrow, for some reason I've lost remote access to my university computer and most things are on it.
I've taken the liberty of submitting a second answer, because my original answer referred to an online app that people could play with to get insight. The answer here is more a geometric argument.
The following diagram illuminates, I hope, what is going on. Much of this was inspired by #Federico Ramponi's observation that the largest triangle is characterized by the tangent at each vertex being parallel to the opposite side.
(source: brainjam.ca)
The picture was produced using a trial version of the excellent desktop program Geometry Expressions. The diagram shows the three circles centered at points A,E, and C. They have equal radii, but the picture doesn't really depend on the radii being equal, so the solution generalizes to circles of different radii. The lines MN, NO, and OM are tangent to the circles, and touch the circles at the points I,H, and G respectively. The latter points form the inner triangle IHG which is the triangle whose size we want to maximize.
There is also an exterior triangle MNO which is homethetic to the interior triangle, meaning that its sides are parallel to that of IHG.
#Federico observed that IHG has maximal area because moving any of its vertices along the corresponding circle will result an a triangle that has the same base but less height, therefore less area. To put it in slightly more technical terms, if the triangle is parameterized by angles t1,t2,t3 on the three circles (as pointed out by #Charles Stewart, and as used in my steepest descent canvas app), then the gradient of the area w.r.t to (t1,t2,t3) is (0,0,0), and the area is extremal (maximal in the diagram).
So how is this diagram computed? I'll admit in advance that I don't quite have the full story, but here's a start. Given the three circles, select a point M. Draw tangents to the circles centered at E and C, and designate the tangent points as G and I. Draw a tangent OHN to the circle centered at A that is parallel to GI. These are fairly straightforward operations both algebraically and geometrically.
But we aren't finished. So far we only have the condition that OHN is parallel to GI. We have no guarantee that MGO is parallel to IH or that MIN is parallel to GH. So we have to go back and refine M. In an interactive geometry program it's no big deal to set this up and then move M until the latter parallel conditions are met (by eyeballs, anyways). Geometry Expressions created the diagram, but I used a bit of a cheat to get it to do so, because its constraint solver was apparently not powerful enough to do the job. The algebraic expressions for G, I, and H are reasonably straightforward, so it should be possible to solve for M based on the fact that MIHG is a parallelogram, either explicitly or numerically.
I should point out that in general if you follow the construction starting from M, you have two choices of tangent for each circle, and therefore eight possible solutions. As in the other attempted answers to the question, unless you have a good heuristic to help you choose in advance which of the tangents to compute, you should probably compute all eight possible triangles and find the one with maximum area. The other seven will be extremal in the sense of being minimal area or saddle points.
That's it. This answer is not quite complete in that it leaves the final computation of M somewhat open ended. But it's reduced to either a 2D search space or the solution of an ornery but not humongous equation.
Finally, I have to disagree with #Federico's conclusion that this confirms that the solution proposed by the OP is optimal. It's true that if you draw perpendiculars from the circle centers to the opposite edge of the inner triangle, those perpendiculars intersect the circle to give you the triangle vertex. E.g. H lies on the line through A perpendicular to GI), but this is not the same as in the original proposed solution (which was to take the line through A and perpendicular to EC - in general EC is not parallel to GI).
I've created an HTML5 canvas app that may be useful for people to play with. It's pretty basic (and the code is not beautiful), but it lets you move three circles of equal radius, and then calculates a maximal triangle using gradient/steepest descent. You can also save bitmaps of the diagram. The diagram also shows the triangle whose vertices are the circle centers, and one of the altitudes. Edit1: the "altitude" is really just a line segment through one of the circle centers and perpendicular to the opposite edge of the triangle joining the centers. It's there because some of the suggested constructions use it. Edit2: the steepest descent method sometimes gets stuck in a local maximum. You can get out of that maximum by moving a circle until the black triangle flips and then bringing the circle back to its original position. Working on how to find the global maximum.
This won't work in IE because it doesn't support canvas, but most other "modern" browsers should work.
I did this partially because I found some of the arguments on this page questionable, and partially because I've never programmed a steepest descent and wanted to see how that worked. Anyways, I hope this helps, and I hope to weigh in with some more comments later.
Edit: I've looked at the geometry a little more and have written up my findings in a separate answer.
Let A, B, C be the vertexes of your triangle, and suppose they are placed as in your solution.
Notice that the key property of your construction is that each of the vertexes lies on a tangent to its circle which is parallel to the opposite side of the triangle. Obviously, the circle itself lies entirely on one side of the tangent, and in the optimal solution each tangent leaves its circle on the same side as the other vertexes.
Consider AB as the "base" of the triangle, and let C float in its circle. If you move C to another position C' within the circle, you will obtain another triangle ABC' with the same base but a smaller height, hence also with a smaller area:
figure 1 http://control.ee.ethz.ch/~ramponif/stuff/circles1.png
For the same reason, you can easily see that any position of the vertexes that doesn't follow your construction cannot be optimal. Suppose, for instance, that each one of the vertexes A', B', C' does not lie on a tangent parallel to the side connecting the other two.
Then, constructing the tangent to the circle that contains (say) C', which is parallel to A'B' and leaves the circle on the same side as A'B', and moving C' to the point of tangency C, it is always possible to construct a triangle A'B'C which has the same base, but a greater height, hence also a greater area:
figure 2 http://control.ee.ethz.ch/~ramponif/stuff/circles2.png
Since any triangle that does not follow your construction cannot be optimal, I do believe that your construction is optimal. In the case when the centers of the circles are aligned I'm a bit confused, but I guess that it is possible to prove optimality along the same lines.
I believe this is a convex optimization problem (no it's not, see below), and hence can be solved efficiently using well known methods.
You essentially want to solve the problem:
maximize: area(v1,v2,v3) ~ |cross((v2-v1), (v3-v1))|
such that: v1 in C1, v2 in C2, v3 in C3 (i.e., v_i-c_i)^2 - r_i^2 <= 0)
Each of the constraints are convex, and the area function is convex as well. Now, I don't know if there is a more efficient formulation, but you can at least use an interior point method with derivatives since the derivative of the area with respect to each vertex position can be worked out analytically (I have it written down somewhere...).
Edit: grad(area(v1,v2,v3))(v_i) = rot90(vec(vj,vk)), where vec(a,b) is making a 2D vector starting at a and ending at b, and rot90 means a positive orientation rotation by 90 degrees, assuming (vi,vj,vk) was positively oriented.
Edit 2: The problem is not convex, as should be obvious considering the collinear case; two degenerate solutions is a sure sign of non-convexity. However, the configuration starting at the circle centers should be in the globally optimal local maximum.
Not optimal, works well when all three are not colinear:
I don't have a proof (and therefore don't know if it's guaranteed to be biggest). Maybe I'll work on one. But:
We have three circles with radius R with positions (from center) P0, P1, and P2. We wish to find the vertices of a triangle such that the area of the triangle is maximum, and the vertices lie on any point of the circles edges.
Find the center of all the circles and call that C. Then C = (P0 + P1 + P2) / 3. Then we find the point on each circle farthest from C.
Find vectors V0, V1, and V2, where Vi = Pi - C. Then find points Q0, Q1, and Q2, where Qi = norm(Vi) * R + Pi. Where norm indicates normalization of a vector, norm(V) = V / |V|.
Q0, Q1, and Q2 are the vertices of the triangle. I assume this is optimal because this is the farthest the vertices could be from each other. (I think.)
My first thought is that you should be able to find an analytic solution.
Then the equations of the circles are:
(x1-h1)^2 + (y1-k1)^2 = r^2
(x2-h2)^2 + (y2-k2)^2 = r^2
(x3-h3)^2 + (y3-k3)^2 = r^2
The vertices of your triangle are (x1, y1), (x2, y2), and (x3, y3). The side lengths of your triangle are
A = sqrt((x1-x2)^2 + (y1-y2)^2)
B = sqrt((x1-x3)^2 + (y1-y3)^2)
C = sqrt((x2-x3)^2 + (y2-y3)^2)
So the area of the triangle is (using Heron's formula)
S = (A+B+C)/2
area = sqrt(S(S-A)(S-B)(S-C))
So area is a function of 6 variables.
At this point I realize this is not a fruitful line of reasoning. This is more like something I'd drop into a simulated annealing system.
So my second thought is to choose the point on circle with centre A as follows: Construct line BC joining the centres of the other two circles, then construct the line AD that is perpendicular to BC and passes through A. One vertex of the triangle is the intersection of AD and circle with centre A. Likewise for the other vertices. I can't prove this but I think it gives different results than the simple "furthest from the centre of all the circles" method, and for some reason it feels better to me. I know, not very mathematical, but then I'm a programmer.
Let's assume the center of the circles to be C0,C1 and C2; and the radius R.
Since the area of a triangle is .5*base*height, let's first find the maximum base that can be constructed with the circles.
Base = Max {(|C0-C1|+2R),(|C1-C2|+2R,(|C2-C0|+2R}
Once the base length is determined between 2 circles, then we can find the farthest perpendicular point from the base line to the third circle. (product of the their slopes is -1)
For special cases such as circles aligned in a single line, we need to perform additional checks at the time of determining the base line.
It appears that finding the largest Apollonius circle for the three circles and then inscribing an equilateral triangle in that circle would be a solution. Proof left as an exercise ;).
EDIT
This method has issues for collinear circles like other solutions here, too and doesn't work.
Some initial thoughts.
Definition Call the sought-after triangle, the maximal triangle. Note that this might not be unique: if the circles all have the same centre, then there are infinitely many maximal triangles obtained by rotation around the center, and if the centres are colinear, then there will be two maximal triangles, each a mirror image of the other.
Definition Call the triangle (possibly, degenerately, either a point or a line) whose vertices are the centres of the circles the interior triangle.
Observation The solution can be expressed as three angles, indicating where on the circumference of each circle the triangle is to be found.
Observation Given two exterior vertices, we can determine a third vertex that gives the maximal area: draw the altitude of the triangle between the two exterior vertices and the centre of the other circle. This line intersects the circumference in two places; the further away point is the maximising choice of third vertex. (Fixed incorrect algorithm, Federico's argument can be adapted to show correctness of this observation)
Consequence The problem is reduced to from a problem in three angles to one in two.
Conjecture Imagine the diagram is a pinboard, with three pins at the three centres of the circles. Imagine also a closed loop of string of length equal to the perimiter of the interior triangle, plus the radius of a circle, and we place this loop around the pins. Take an imaginary pen and imaginarily draw the looping figure where the loop is always tight. I conjecture that the points of the maximal triangle will all lie on this looping figure, and that in the case where the interior triangle is not degenerate, the vertices of the maximal triangle will be the three points where the looping figure intersects one of the circle circumferences. Many counterexamples
More to follow when I can spare time to think about it.
This is just a thought, no proof or math to go along with the construction just yet. It requires that the circle centers not be colinear if the radii are the same for each circle. This restriction can be relaxed if the radii are different.
Construction:
(1) Construct a triangle such that each side of the triangle is tangent to two circles, and therefore, each circle has a tangent point on two sides of the triangle.
(2) Draw the chord between these two tangent points on each circle
(3) Find the point on the boundary of the circle on the extended ray starting at the circle's center through the midpoint of the chord. There should be one such point on each of the three circles.
(4) Connect them three points of (3) to fom a triangle.
At that point I don't know if it's the largest such triangle, but if you're looking for something approximate, this might be it.
Later: You might be able to find an approximate answer for the degenerate case by perturbing the "middle" circle slightly in a direction perpendicular to the line connecting the three circles.

Normal Vector of Three Points

Hey math geeks, I've got a problem that's been stumping me for a while now. It's for a personal project.
I've got three dots: red, green, and blue. They're positioned on a cardboard slip such that the red dot is in the lower left (0,0), the blue dot is in the lower right (1,0), and the green dot is in the upper left. Imagine stepping back and taking a picture of the card from an angle. If you were to find the center of each dot in the picture (let's say the units are pixels), how would you find the normal vector of the card's face in the picture (relative to the camera)?
Now a few things I've picked up about this problem:
The dots (in "real life") are always at a right angle. In the picture, they're only at a right angle if the camera has been rotated around the red dot along an "axis" (axis being the line created by the red and blue or red and green dots).
There are dots on only one side of the card. Thus, you know you'll never be looking at the back of it.
The distance of the card to the camera is irrelevant. If I knew the depth of each point, this would be a whole lot easier (just a simple cross product, no?).
The rotation of the card is irrelevant to what I'm looking for. In the tinkering that I've been doing to try to figure this one out, the rotation can be found with the help of the normal vector in the end. Whether or not the rotation is a part of (or product of) finding the normal vector is unknown to me.
Hope there's someone out there that's either done this or is a math genius. I've got two of my friends here helping me on it and we've--so far--been unsuccessful.
i worked it out in my old version of MathCAD:
Edit: Wording wrong in screenshot of MathCAD: "Known: g and b are perpendicular to each other"
In MathCAD i forgot the final step of doing the cross-product, which i'll copy-paste here from my earlier answer:
Now we've solved for the X-Y-Z of the
translated g and b points, your
original question wanted the normal of
the plane.
If cross g x b, we'll get the
vector normal to both:
| u1 u2 u3 |
g x b = | g1 g2 g3 |
| b1 b2 b3 |
= (g2b3 - b2g3)u1 + (b1g3 - b3g1)u2 + (g1b2 - b1g2)u3
All the values are known, plug them in
(i won't write out the version with g3
and b3 substituted in, since it's just
too long and ugly to be helpful.
But in practical terms, i think you'll have to solve it numerically, adjusting gz and bz so as to best fit the conditions:
g · b = 0
and
|g| = |b|
Since the pixels are not algebraically perfect.
Example
Using a picture of the Apollo 13 astronauts rigging one of the command module's square Lithium Hydroxide cannister to work in the LEM, i located the corners:
Using them as my basis for an X-Y plane:
i recorded the pixel locations using Photoshop, with positive X to the right, and positive Y down (to keep the right-hand rule of Z going "into" the picture):
g = (79.5, -48.5, gz)
b = (-110.8, -62.8, bz)
Punching the two starting formulas into Excel, and using the analysis toolpack to "minimize" the error by adjusting gz and bz, it came up with two Z values:
g = (79.5, -48.5, 102.5)
b = (-110.8, -62.8, 56.2)
Which then lets me calcuate other interesting values.
The length of g and b in pixels:
|g| = 138.5
|b| = 139.2
The normal vector:
g x b = (3710, -15827, -10366)
The unit normal (length 1):
uN = (0.1925, -0.8209, -0.5377)
Scaling normal to same length (in pixels) as g and b (138.9):
Normal = (26.7, -114.0, -74.7)
Now that i have the normal that is the same length as g and b, i plotted them on the same picture:
i think you're going to have a new problem: distortion introduced by the camera lens. The three dots are not perfectly projected onto the 2-dimensional photographic plane. There's a spherical distortion that makes straight lines no longer straight, makes equal lengths no longer equal, and makes the normals slightly off of normal.
Microsoft research has an algorithm to figure out how to correct for the camera's distortion:
A Flexible New Technique for Camera Calibration
But it's beyond me:
We propose a flexible new technique to
easily calibrate a camera. It is well
suited for use without specialized
knowledge of 3D geometry or computer
vision. The technique only requires
the camera to observe a planar pattern
shown at a few (at least two)
different orientations. Either the
camera or the planar pattern can be
freely moved. The motion need not be
known. Radial lens distortion is
modeled. The proposed procedure
consists of a closed-form solution,
followed by a nonlinear refinement
based on the maximum likelihood
criterion. Both computer simulation
and real data have been used to test
the proposed technique, and very good
results have been obtained. Compared
with classical techniques which use
expensive equipments such as two or
three orthogonal planes, the proposed
technique is easy to use and flexible.
It advances 3D computer vision one
step from laboratory environments to
real world use.
They have a sample image, where you can see the distortion:
(source: microsoft.com)
Note
you don't know if you're seeing the "top" of the cardboard, or the "bottom", so the normal could be mirrored vertically (i.e. z = -z)
Update
Guy found an error in the derived algebraic formulas. Fixing it leads to formulas that i, don't think, have a simple closed form. This isn't too bad, since it can't be solved exactly anyway; but numerically.
Here's a screenshot from Excel where i start with the two knowns rules:
g · b = 0
and
|g| = |b|
Writing the 2nd one as a difference (an "error" amount), you can then add both up and use that value as a number to have excel's solver minimize:
This means you'll have to write your own numeric iterative solver. i'm staring over at my Numerical Methods for Engineers textbook from university; i know it contains algorithms to solve recursive equations with no simple closed form.
From the sounds of it, you have three points p1, p2, and p3 defining a plane, and you want to find the normal vector to the plane.
Representing the points as vectors from the origin, an equation for a normal vector would be
n = (p2 - p1)x(p3 - p1)
(where x is the cross-product of the two vectors)
If you want the vector to point outwards from the front of the card, then ala the right-hand rule, set
p1 = red (lower-left) dot
p2 = blue (lower-right) dot
p3 = green (upper-left) dot
# Ian Boyd...I liked your explanation, only I got stuck on step 2, when you said to solve for bz. You still had bz in your answer, and I don't think you should have bz in your answer...
bz should be +/- square root of gx2 + gy2 + gz2 - bx2 - by2
After I did this myself, I found it very difficult to substitute bz into the first equation when you solved for gz, because when substituting bz, you would now get:
gz = -(gxbx + gyby) / sqrt( gx2 + gy2 + gz2 - bx2 - by2 )
The part that makes this difficult is that there is gz in the square root, so you have to separate it and combine the gz together, and solve for gz Which I did, only I don't think the way I solved it was correct, because when I wrote my program to calculate gz for me, I used your gx, and gy values to see if my answer matched up with yours, and it did not.
So I was wondering if you could help me out, because I really need to get this to work for one of my projects. Thanks!
Just thinking on my feet here.
Your effective inputs are the apparent ratio RB/RG [+], the apparent angle BRG, and the angle that (say) RB makes with your screen coordinate y-axis (did I miss anything). You need out the components of the normalized normal (heh!) vector, which I believe is only two independent values (though you are left with a front-back ambiguity if the card is see through).[++]
So I'm guessing that this is possible...
From here on I work on the assumption that the apparent angle of RB is always 0, and we can rotate the final solution around the z-axis later.
Start with the card positioned parallel to the viewing plane and oriented in the "natural" way (i.e. you upper vs. lower and left vs. right assignments are respected). We can reach all the interesting positions of the card by rotating by \theta around the initial x-axis (for -\pi/2 < \theta < \pi/2), then rotating by \phi around initial y-axis (for -\pi/2 < \phi < \pi/2). Note that we have preserved the apparent direction of the RB vector.
Next step compute the apparent ratio and apparent angle after in terms of \theta and \phi and invert the result.[+++]
The normal will be R_y(\phi)R_x(\theta)(0, 0, 1) for R_i the primitive rotation matrix around axis i.
[+] The absolute lengths don't count, because that just tells you the distance to card.
[++] One more assumption: that the distance from the card to view plane is much large than the size of the card.
[+++] Here the projection you use from three-d space to the viewing plane matters. This is the hard part, but not something we can do for you unless you say what projection you are using. If you are using a real camera, then this is a perspective projection and is covered in essentially any book on 3D graphics.
right, the normal vector does not change by distance, but the projection of the cardboard on a picture does change by distance (Simple: If you have a small cardboard, nothing changes.
If you have a cardboard 1 mile wide and 1 mile high and you rotate it so that one side is nearer and the other side more far away, the near side is magnified and the far side shortened on the picture. You can see that immediately that an rectangle does not remain a rectangle, but a trapeze)
The mostly accurate way for small angles and the camera centered on the middle is to measure the ratio of the width/height between "normal" image and angle image on the middle lines (because they are not warped).
We define x as left to right, y as down to up, z as from far to near.
Then
x = arcsin(measuredWidth/normWidth) red-blue
y = arcsin(measuredHeight/normHeight) red-green
z = sqrt(1.0-x^2-y^2)
I will calculate tomorrow a more exact solution, but I'm too tired now...
You could use u,v,n co-oridnates. Set your viewpoint to the position of the "eye" or "camera", then translate your x,y,z co-ordinates to u,v,n. From there you can determine the normals, as well as perspective and visible surfaces if you want (u',v',n'). Also, bear in mind that 2D = 3D with z=0. Finally, make sure you use homogenious co-ordinates.

Point-Triangle Collision Detection in 3D

How do I correct for floating point error in the following physical simulation:
Original point (x, y, z),
Desired point (x', y', z') after forces are applied.
Two triangles (A, B, C) and (B, C, D), who share edge BC
I am using this method for collision detection:
For each Triangle
If the original point is in front of the current triangle, and the desired point is behind the desired triangle:
Calculate the intersection point of the ray (original-desired) and the plane (triangle's normal).
If the intersection point is inside the triangle edges (!)
Respond to the collision.
End If
End If
Next Triangle
The problem I am having is that sometimes the point falls into the grey area of floating point math where it is so close to the line BC that it fails to collide with either triangle, even though technically it should always collide with one or the other since they share an edge. When this happens the point passes right between the two edge sharing triangles. I have marked one line of the code with (!) because I believe that's where I should be making a change.
One idea that works in very limited situations is to skip the edge testing. Effectively turning the triangles into planes. This only works when my meshes are convex hulls, but I plan to create convex shapes.
I am specifically using the dot product and triangle normals for all of my front-back testing.
This is an inevitable problem when shooting a single ray against some geometry with edges and vertices. It's amazing how physical simulations seem to seek out the smallest of numerical inaccuracies!
Some of the explanations and solutions proposed by other respondents will not work. In particular:
Numerical inaccuracy really can cause a ray to "fall through the gap". The problem is that we intersect the ray with the plane ABC (getting the point P, say) before testing against line BC. Then we intersect the ray with plane BCD (getting the point Q, say) before testing against line BC. P and Q are both represented by the closest floating-point approximation; there's no reason to expect that these exactly lie on the planes that they are supposed to lie on, and so every possibility that you can have both P to the left of BC and Q to the right of BC.
Using less-than-or-equal test won't help; it's inaccuracy in the intersection of the ray and the plane that's the trouble.
Square roots are not the issue; you can do all of the necessary computations using dot products and floating-point division.
Here are some genuine solutions:
For convex meshes, you can just test against all the planes and ignore the edges and vertices, as you say (thus avoiding the issue entirely).
Don't intersect the ray with each triangle in turn. Instead, use the scalar triple product. (This method makes the exact same sequence of computations for the ray and the edge BC when considering each triangle, ensuring that any numerical inaccuracy is at least consistent between the two triangles.)
For non-convex meshes, give the edges and vertices some width. That is, place a small sphere at each vertex in the mesh, and place a thin cylinder along each edge of the mesh. Intersect the ray with these spheres and cylinders as well as with the triangles. These additional geometric figures stop the ray passing through edges and vertices of the mesh.
Let me strongly recommend the book Real-Time Collision Detection by Christer Ericson. There's a discussion of this exact problem on pages 446–448, and an explanation of the scalar triple product approach to intersecting a ray with a triangle on pages 184–188.
It sounds like you ain't including testing if it's ON the edge (you're writing "Inside triangle edges"). Try changing code to "less than or equal" (inside, or overlapping).
I find it somewhat unlikely that your ray would fall exactly between the triangles in a way that the floating point precision would take effect. Are you absolutely positive that this is indeed the problem?
At any rate, a possible solution is instead of shooting just one ray to shoot three that are very close to each other. If one falls exactly in between that atleast one of the other two is guaranteed to fall on a triangle.
This will atleast allow you to test if the problem is really the floating point error or something more likely.
#Statement: I am indeed already using a "greater than or equal to" comparison in my code, thank you for the suggestion. +1
My current solution is to add a small nudge amount to the edge test. Basically when each triangle is tested, its edges are pushed out by a very small amount to counteract the error in floating point. Sort of like testing if the result of a floating point calculation is less than 0.01 rather than testing for equality with zero.
Is this a reasonable solution?
If you are doing distance measurements, watch out for square roots. They have a nasty habit of throwing away half of your precision. If you stack a few of these calculations up, you can get in big trouble fast. Here is a distance function I have used.
double Distance(double x0, double y0, double x1, double y1)
{
double a, b, dx, dy;
dx = abs(x1 - x0);
dy = abs(y1 - y0);
a = max(dx, dy));
if (a == 0)
return 0;
b = min(dx, dy);
return a * sqrt( 1 + (b*b) / (a*a) );
}
Since the last operation isn't a square root, you don't lose the precision any more.
I discovered this in a project I was working on. After studying it and figuring out what it did I tracked down the programmer who I thought was responsible to congratulate him, but he had no idea what I was talking about.

Resources