dcast keeping four value variables and two factors - r

I have a data.frame in R in long format, and I want to cast it into wide.
It has monthly data from several clients, and I want the final data.frame to have the mean per client of he, vo, ep and fe.
store and pr should be fixed for each client.
I think dcast from package reshape2 should do the job, but I can't make it work.
month store client he vo ep fe pr
jan 1 54010 12 392 1 7 Basic
jan 2 54011 12 376 2 2 Premium
jan 1 54012 11 385 2 6 Basic
feb 1 54010 10 394 3 7 Basic
feb 2 54011 10 385 1 1 Premium
feb 1 54012 11 395 1 1 Basic
mar 1 54010 11 416 2 2 Basic
mar 2 54011 11 417 3 4 Premium
mar 1 54012 11 390 0 2 Basic
apr 1 54010 11 389 2 NA Basic
apr 2 54011 7 398 6 3 Premium
apr 1 54012 11 368 1 3 Basic

If you need annual mean of those columns by client (it wasn't clear), dplyr can do it:
library(dplyr)
dat <- read.table(text="month store client he vo ep fe pr
jan 1 54010 12 392 1 7 Basic
jan 2 54011 12 376 2 2 Premium
jan 1 54012 11 385 2 6 Basic
feb 1 54010 10 394 3 7 Basic
feb 2 54011 10 385 1 1 Premium
feb 1 54012 11 395 1 1 Basic
mar 1 54010 11 416 2 2 Basic
mar 2 54011 11 417 3 4 Premium
mar 1 54012 11 390 0 2 Basic
apr 1 54010 11 389 2 NA Basic
apr 2 54011 7 398 6 3 Premium
apr 1 54012 11 368 1 3 Basic", stringsAs=F, header=T)
mt <- function(x, ...) { mean(x, na.rm=TRUE) }
dat %>%
group_by(client) %>%
summarise_each(funs(mt), -store, -pr, -month)
## Source: local data frame [3 x 5]
##
## client he vo ep fe
## 1 54010 11 397.75 2 5.333333
## 2 54011 10 394.00 3 2.500000
## 3 54012 11 384.50 1 3.000000

Here's a data table solution using the dat data from #hrbrmstr's answer:
library(data.table)
## coerce to data table
DT <- as.data.table(dat)
## run mean() on columns 4 through 7, grouped by 'client'
DT[, lapply(.SD, mean, na.rm = TRUE), .SDcols = 4:7, by = client]
# client he vo ep fe
# 1: 54010 11 397.75 2 5.333333
# 2: 54011 10 394.00 3 2.500000
# 3: 54012 11 384.50 1 3.000000

Related

Repeating annual values multiple times to form a monthly dataframe

I have an annual dataset as below:
year <- c(2016,2017,2018)
xxx <- c(1,2,3)
yyy <- c(4,5,6)
df <- data.frame(year,xxx,yyy)
print(df)
year xxx yyy
1 2016 1 4
2 2017 2 5
3 2018 3 6
Where the values in column xxx and yyy correspond to values for that year.
I would like to expand this dataframe (or create a new dataframe), which retains the same column names, but repeats each value 12 times (corresponding to the month of that year) and repeat the yearly value 12 times in the first column.
As mocked up by the code below:
year <- rep(2016:2018,each=12)
xxx <- rep(1:3,each=12)
yyy <- rep(4:6,each=12)
df2 <- data.frame(year,xxx,yyy)
print(df2)
year xxx yyy
1 2016 1 4
2 2016 1 4
3 2016 1 4
4 2016 1 4
5 2016 1 4
6 2016 1 4
7 2016 1 4
8 2016 1 4
9 2016 1 4
10 2016 1 4
11 2016 1 4
12 2016 1 4
13 2017 2 5
14 2017 2 5
15 2017 2 5
16 2017 2 5
17 2017 2 5
18 2017 2 5
19 2017 2 5
20 2017 2 5
21 2017 2 5
22 2017 2 5
23 2017 2 5
24 2017 2 5
25 2018 3 6
26 2018 3 6
27 2018 3 6
28 2018 3 6
29 2018 3 6
30 2018 3 6
31 2018 3 6
32 2018 3 6
33 2018 3 6
34 2018 3 6
35 2018 3 6
36 2018 3 6
Any help would be greatly appreciated!
I'm new to R and I can see how I would do this with a loop statement but was wondering if there was an easier solution.
Convert df to a matrix, take the kronecker product with a vector of 12 ones and then convert back to a data.frame. The as.data.frame can be omitted if a matrix result is ok.
as.data.frame(as.matrix(df) %x% rep(1, 12))

How to create a new column using looping and rbind in r?

I have a data similar like this. I would like to make 3 columns (date1, date2, date3) by using looping and rbind. It is because I am requied to do it by only that method.
(all I was told is making a loop, subset the data, sort it make a new data frame then rbind it to make a new column.)
year month day id
2011 1 5 3101
2011 1 14 3101
2011 2 3 3101
2011 2 4 3101
2012 1 27 3153
2012 2 20 3153
2012 2 22 3153
2012 3 1 3153
2013 1 31 3103
2013 2 1 3103
2013 2 4 3103
2013 3 4 3103
2013 3 6 3103
The result I expect is:
date1: number of days from 2011, January 1st, start again from 1 in a new year.
date2: number of days of an id working in a year, start again from 1 in a new year.
date3: number of days open within a year, start again from 1 in a new year.
(all of the dates are in ascending order)
year month day id date1 date2 date3
2011 1 5 3101 5 1 1
2011 1 14 3101 14 2 2
2011 2 3 3101 34 3 3
2011 2 4 3101 35 4 4
2012 1 27 3153 27 1 1
2012 2 20 3153 51 2 2
2012 2 22 3153 53 3 3
2012 3 1 3153 60 4 4
2013 1 31 3103 31 1 1
2013 2 1 3103 32 2 2
2013 2 4 3103 35 3 3
2013 3 4 3103 94 4 4
2013 3 6 3103 96 5 5
Please help! Thank you.
You can do it without using unnecessary for loop and subset, here is the answer below
df <- read.table(text =" year month day id
2011 1 5 3101
2011 1 14 3101
2011 2 3 3101
2011 2 4 3101
2012 1 27 3153
2012 2 20 3153
2012 2 22 3153
2012 3 1 3153
2013 1 31 3103
2013 2 1 3103
2013 2 4 3103
2013 3 4 3103
2013 3 6 3103",header = T)
library(lubridate)
df$date1 <- yday(mdy(paste0(df$month,"-",df$day,"-",df$year)))
df$date2 <- ave(df$year, df$id, FUN = seq_along)
df$date3 <- ave(df$year, df$year, FUN = seq_along)

How to lump sum the number of days of a data of several year?

I have data similar to this. I would like to lump sum the day (I'm not sure the word "lump sum" is correct or not) and create a new column "date" so that new column lump sum the number of 3 years data in ascending order.
year month day
2011 1 5
2011 2 14
2011 8 21
2012 2 24
2012 3 3
2012 4 4
2012 5 6
2013 2 14
2013 5 17
2013 6 24
I did this code but result was wrong and it's too long also. It doesn't count the February correctly since February has only 28 days. are there any shorter ways?
cday <- function(data,syear=2011,smonth=1,sday=1){
year <- data[1]
month <- data[2]
day <- data[3]
cmonth <- c(0,31,28,31,30,31,30,31,31,30,31,30,31)
date <- (year-syear)*365+sum(cmonth[1:month])+day
for(yr in c(syear:year)){
if(yr==year){
if(yr%%4==0&&month>2){date<-date+1}
}else{
if(yr%%4==0){date<-date+1}
}
}
return(date)
}
op10$day.no <- apply(op10[,c("year","month","day")],1,cday)
I expect the result like this:
year month day date
2011 1 5 5
2011 1 14 14
2011 1 21 21
2011 1 24 24
2011 2 3 31
2011 2 4 32
2011 2 6 34
2011 2 14 42
2011 2 17 45
2011 2 24 52
Thank you for helping!!
Use Date classes. Dates and times are complicated, look for tools to do this for you rather than writing your own. Pick whichever of these you want:
df$date = with(df, as.Date(paste(year, month, day, sep = "-")))
df$julian_day = as.integer(format(df$date, "%j"))
df$days_since_2010 = as.integer(df$date - as.Date("2010-12-31"))
df
# year month day date julian_day days_since_2010
# 1 2011 1 5 2011-01-05 5 5
# 2 2011 2 14 2011-02-14 45 45
# 3 2011 8 21 2011-08-21 233 233
# 4 2012 2 24 2012-02-24 55 420
# 5 2012 3 3 2012-03-03 63 428
# 6 2012 4 4 2012-04-04 95 460
# 7 2012 5 6 2012-05-06 127 492
# 8 2013 2 14 2013-02-14 45 776
# 9 2013 5 17 2013-05-17 137 868
# 10 2013 6 24 2013-06-24 175 906
# using this data
df = read.table(text = "year month day
2011 1 5
2011 2 14
2011 8 21
2012 2 24
2012 3 3
2012 4 4
2012 5 6
2013 2 14
2013 5 17
2013 6 24", header = TRUE)
This is all using base R. If you handle dates and times frequently, you may also want to look a the lubridate package.

unlist and merge into a single dataframe in r

I have a list of dataframes that I need to be combined into a single one.
year<-1990:2000
v1<-1:11
v2<-20:30
df1<-data.frame(year,v1)
df2<-data.frame(year,v2)
ldf<-list(df1,df2)
I now want to unlist this dataframe and get
> head(df)
year v1 v2
1 1990 1 20
2 1991 2 21
3 1992 3 22
4 1993 4 23
Note that my question is different from the solution provided in a similar question, where the solution to that question was: `df <- ldply(ldf, data.frame)
Because what I am essentially looking for, is a more automatic way of doing this: df<-merge(df1,df2, by="year")
With more number of list elements, a convenient option is reduce with one of the join functions
library(tidyverse)
ldf %>%
reduce(inner_join, by = "year")
# year v1 v2
#1 1990 1 20
#2 1991 2 21
#3 1992 3 22
#4 1993 4 23
#5 1994 5 24
#6 1995 6 25
#7 1996 7 26
#8 1997 8 27
#9 1998 9 28
#10 1999 10 29
#11 2000 11 30
Is there anything wrong with:
df <- merge(ldf[[1]], ldf[[2]], by="year")
Or for a long list:
df1 <- ldf[[1]]
for (x in 2:length(ldf)) {
df1 <- merge(df1, ldf[[x]])
}
# year v1 v2
# 1 1990 1 20
# 2 1991 2 21
# 3 1992 3 22
# 4 1993 4 23
# 5 1994 5 24
# 6 1995 6 25
# 7 1996 7 26
# 8 1997 8 27
# 9 1998 9 28
# 10 1999 10 29
# 11 2000 11 30

How to remove subjects with missing yearly observations in R?

num Name year age X
1 1 A 2011 68 116292
2 1 A 2012 69 46132
3 1 A 2013 70 7042
4 1 A 2014 71 -100425
5 1 A 2015 72 6493
6 2 B 2011 20 -8484
7 3 C 2015 23 -120836
8 4 D 2011 3 -26523
9 4 D 2012 4 9923
10 4 D 2013 5 82432
I have the data which is represented by various subjects in 5 years. I need to remove all the subjects, which are missing any of years from 2011 to 2015. How can I accomplish it, so in given data only subject A is left?
Using data.table:
A data.table solution might look something like this:
library(data.table)
dt <- as.data.table(df)
dt[, keep := identical(unique(year), 2011:2015), by = Name ][keep == T, ][,keep := NULL]
# num Name year age X
#1: 1 A 2011 68 116292
#2: 1 A 2012 69 46132
#3: 1 A 2013 70 7042
#4: 1 A 2014 71 -100425
#5: 1 A 2015 72 6493
This is more strict in that it requires that the unique years be exactly equal to 2011:2015. If there is a 2016, for example that person would be excluded.
A less restrictive solution would be to check that 2011:2015 is in your unique years. This should work:
dt[, keep := all(2011:2015 %in% unique(year)), by = Name ][keep == T, ][,keep := NULL]
Thus, if for example, A had a 2016 year and a 2010 year it would still keep all of A. But if anyone is missing a year in 2011:2015 this would exclude them.
Using base R & aggregate:
Same option, but using aggregate from base R:
agg <- aggregate(df$year, by = list(df$Name), FUN = function(x) all(2011:2015 %in% unique(x)))
df[df$Name %in% agg[agg$x == T, 1] ,]
Here is a slightly more straightforward tidyverse solution.
First, expand the dataframe to include all combinations of Name + year:
df %>% complete(Name, year)
# A tibble: 20 x 5
Name year num age X
<fctr> <int> <int> <int> <int>
1 A 2011 1 68 116292
2 A 2012 1 69 46132
3 A 2013 1 70 7042
4 A 2014 1 71 -100425
5 A 2015 1 72 6493
6 B 2011 2 20 -8484
7 B 2012 NA NA NA
8 B 2013 NA NA NA
9 B 2014 NA NA NA
10 B 2015 NA NA NA
...
Then extend the pipe to group by "Name", and filter to keep only those with 0 NA values:
df %>% complete(Name, year) %>%
group_by(Name) %>%
filter(sum(is.na(age)) == 0)
# A tibble: 5 x 5
# Groups: Name [1]
Name year num age X
<fctr> <int> <int> <int> <int>
1 A 2011 1 68 116292
2 A 2012 1 69 46132
3 A 2013 1 70 7042
4 A 2014 1 71 -100425
5 A 2015 1 72 6493
Just check which names have the right number of entries.
## Reproduce your data
df = read.table(text=" num Name year age X
1 1 A 2011 68 116292
2 1 A 2012 69 46132
3 1 A 2013 70 7042
4 1 A 2014 71 -100425
5 1 A 2015 72 6493
6 2 B 2011 20 -8484
7 3 C 2015 23 -120836
8 4 D 2011 3 -26523
9 4 D 2012 4 9923
10 4 D 2013 5 82432",
header=TRUE)
Tab = table(df$Name)
Keepers = names(Tab)[which(Tab == 5)]
df[df$Name %in% Keepers,]
num Name year age X
1 1 A 2011 68 116292
2 1 A 2012 69 46132
3 1 A 2013 70 7042
4 1 A 2014 71 -100425
5 1 A 2015 72 6493
Here is a somewhat different approach using tidyverse packages:
library(tidyverse)
df <- read.table(text = " num Name year age X
1 1 A 2011 68 116292
2 1 A 2012 69 46132
3 1 A 2013 70 7042
4 1 A 2014 71 -100425
5 1 A 2015 72 6493
6 2 B 2011 20 -8484
7 3 C 2015 23 -120836
8 4 D 2011 3 -26523
9 4 D 2012 4 9923
10 4 D 2013 5 82432")
df2 <- spread(data = df, key = Name, value = year)
x <- colSums(df2[, 4:7], na.rm = TRUE) > 10000
df3 <- select(df2, num, age, X, c(4:7)[x])
df4 <- na.omit(df3)
All steps can of course be constructed as one single pipe with the %>% operator.

Resources