The only equation to calculate this that I can find involves t in the range [0, 1], but I have no idea how long it will take to travel the entire path, so I can't calculate (1 - t).
I know the speed at which I'm traveling, but it seems to be a heavy idea to calculate the total time beforehand (nor do I actually know how to do that calculation). What is an equation to figure out the position without knowing the total time?
Edit To clarify on the cubic bezier curve: I have four control points (P0 to P1), and to get a value on the curve with t, I need to use the four points as such:
B(t) = (1-t)^3P0 + 3t(1-t)^2P1 + 3t^2(1-t)P2 + t^3P3
I am not using a parametric equation to define the curve. The control points are what define the curve. What I need is an equation that does not require the use of knowing the range of t.
I think there is a misunderstanding here. The 't' in the cubic Bezier curve's definition does not refer to 'time'. It is parameter that the x, y or even z functions based on. Unlike the traditional way of representing y as a function of x, such as y=f(x), an alternative way of representing a curve is by the parametric form that represents x, y and z as functions of an additional parameter t, C(t)=(x(t), y(t), z(t)). Typically the t value will range from 0 to 1, but this is not a must. The common representation for a circle as x=cos(t) and y=sin(t) is an example of parametric representation. So, if you have the parametric representation of a curve, you can evaluate the position on the curve for any given t value. It has nothing to do with the time it takes to travel the entire path.
You have the given curve and you have your speed. To calculate what you're asking for you need to divide the total distance by the speed you traveled given that time. That will give you the parametric (t) you need. So if the total curve has a distance of 72.2 units and your speed is 1 unit then your t is 1/72.2.
Your only missing bit is calculating the length of a given curve. This is typically done by subdividing it into line segments small enough that you don't care, and then adding up the total distance of those line segments. You could likely combine those two steps as well if you were so inclined. If you have your given speed, just iteration like 1000th of the curve add the line segment between the start and point 1000th of the way through the curve, and subtract that from how far you need to travel (given that you have speed and time, you have distance you need to travel), and keep that up until you've gone as far as you need to go.
The range for t is between 0 and 1.
x = (1-t)*(1-t)*(1-t)*p0x + 3*(1-t)*(1-t)*t*p1x + 3*(1-t)*t*t*p2x + t*t*t*p3x;
y = (1-t)*(1-t)*(1-t)*p0y + 3*(1-t)*(1-t)*t*p1y + 3*(1-t)*t*t*p2y + t*t*t*p3y;
Related
This is more of a general Maths question (might be silly even). But in high school we learn to identify the roots of an equation via it's plot right.
For example, for the equation
y = x^2 - 1
The blue line would show us the roots. This is when the blue line crosses x, so +- 1.
Now, if we said that the equation had a real and an imaginary part, so that it is
y = x^2 - 1 + (x^2 - 0.5)i
as given in the Mathematica screenshot, then we have a real part which crosses zero, and an imaginary part which also crosses zero but at a different x. So my question is: is it possible to identify the roots of such an equation by simply looking at the real and imaginary parts of the plot?
Note: part of my confusion is that if I use FindRoot, in Mathematica, I get either 0.877659 - 0.142424i or -0.877659 + 0.142424i. So might be some fundamental property in Maths I don't know about which prevents one from identifying roots of a complex function through separating real and imaginary parts...
we have a real part which crosses zero, and an imaginary part which also crosses zero but at a different x.
Those are graphs of the real and imaginary parts plotted for real values of x. If they both crossed the horizontal axis at the same point(s), that would mean the equation has real root(s), since both real and imaginary parts would be zero for some real value of x. However, this equation has no real roots, so the crossing points are different.
So my question is: is it possible to identify the roots of such an equation by simply looking at the real and imaginary parts of the plot?
f(x) = x^2 - 1 + i (x^2 - 0.5) is a complex function of a complex variable, which maps a complex variable x = a + i b to the complex value f(x) = Re(f(x)) + i Im(f(x)).
Each of Re(f(x)) and Im(f(x)) is a real function of a complex variable. Such functions can be plotted in 3D by representing x = a + i b as a point in the (a, b) plane, and the value of the function along the third dimension, say c. For example, f(x) has the following graphs for the real and imaginary parts.
The cross-sections of the two surfaces by the horizontal plane c = 0 are pairs of curves where each function is zero, respectively. It follows that the intersections of those curves are the points where Re(f(x)) = Im(f(x)) = 0, which means they are the roots of the equation f(x) = 0.
Since f(x) = 0 is a quadratic equation, it must have two roots, and those two points are in fact ±(0.877659 - 0.142424 i), as can be verified by direct calculation.
I have a similar line graph plotted using R plot function (plot(df))
I want to get distance of the whole line between two points in the graph (e.g., between x(1) and x(3)). How can I do this?
If your function is defined over a fine grid of points, you can compute the length of the line segment between each pair of points and add them. Pythagoras is your friend here:
To the extent that the points are not close enough together that the function is essentially linear between the points, it will tend to (generally only slightly) underestimate the arc length.
Note that if your x-values are stored in increasing order, these ẟx and ẟy values can be obtained directly by differencing (in R that's diff)
If you have a functional form for y as a function of x you can apply the integral for the arc length -- i.e. integrate
∫ √[1+(dy/dx)²] dx
between a and b. This is essentially just the calculation in 1 taken to the limit.
If both x and y are parametric functions of another variable (t, say) you can simplify the parametric form of the above integral (if we don't forget the Jacobian) to integrating
∫ √[(dx/dt)²+(dy/dt)²] dt
between a and b
(Note the direct parallel to 1.)
if you don't have a convenient-to-integrate functional form in 2. or 3. you can use numerical quadrature; this can be quite efficient (which can be handy when the derivative function is expensive to evaluate).
I am back at college learning maths and I want to try and use some this knowledge to create some svg with d3.js.
If I have a function f(x) = x^3 - 3x^2 + 3x - 1
I would take the following steps:
Find the x intercepts for when y = 0
Find the y intercept when x = 0
Find the stationary points when dy\dx = 0
I would then have 2 x values from point 3 to plug into the original equation.
I would then draw a nature table do judge the flow of the graph or curve.
Plot the known points from the above and sketch the graph.
Translating what I would do on pen and paper into code instructions is what I really could do with any sort of advice on the following:
How can I programmatically factorise point 1 of the above to find the x-intercepts for when y = 0. I honestly do not know where to even start.
How would I programmatically find dy/dx and the values for the stationary points.
If I actually get this far then what should I use in d3 to join the points on the graph.
Your other "steps" have nothing to do with d3 or plotting.
Find the x intercepts for when y = 0
This is root finding. Look for algorithms to help with this.
Find the y intercept when x = 0
Easy: substitute to get y = 1.
Find the stationary points when dy\dx = 0
Take the first derivative to get 3x^2 - 12x + 9 and repeat the root finding step. Easy to get using quadratic equation.
I would then have 2 x values from point 3 to plug into the original
equation. I would then draw a nature table do judge the flow of the
graph or curve. Plot the known points from the above and sketch the
graph.
I would just draw the curve. Pick a range for x and go.
It's great to learn d3. You'll end up with something like this:
https://maurizzzio.github.io/function-plot/
For a cubic polynomial, there are closed formulas available to find all the particular points that you want (https://en.wikipedia.org/wiki/Cubic_function), and it is a sound approach to determine them.
Anyway, you will have to plot the smooth curve, which means that you will need to compute close enough points and draw a polyline that joins them.
Doing this, you are actually performing the first steps of numerical root isolation, with such an accuracy that the approximate and exact roots will be practically undistinguishable.
So an easy combined solution is to draw the curve as a polyline and find the intersections with the X axis as well as extrema using this polyline representation, rather than by means of more sophisticated methods.
This approach works for any continuous curve and is very easy to implement. So you actually draw the curve to find particular points rather than conversely as is done by analytical methods.
For best results on complicated curves, you can adapt the point density based on the local curvature, but this is another story.
Given the points of a line and a quadratic bezier curve, how do you calculate their nearest point?
There exist a scientific paper regarding this question from INRIA: Computing the minimum distance between two Bézier curves (PDF here)
I once wrote a tool to do a similar task. Bezier splines are typically parametric cubic polynomials. To compute the square of the distance between a cubic segment and a line, this is just the square of the distance between two polynomial functions, itself just another polynomial function! Note that I said the square of the distance, not the square root.
Essentially, for any point on a cubic segment, one could compute the square of the distance from that point to the line. This will be a 6th order polynomial. Can we minimize that square of the distance? Yes. The minimum must occur where the derivative of that polynomial is zero. So differentiate, getting a 5th order polynomial. Use your favorite root finding tool that generates all of the roots numerically. Jenkins & Traub, whatever. Choose the correct solution from that set of roots, excluding any solutions that are complex, and only picking a solution if it lies inside the cubic segment in question. Make sure you exclude the points that correspond to local maxima of the distance.
All of this can be efficiently done, and no iterative optimizer besides a polynomial root finder need be used, thus one does not require the use of optimization tools that require starting values, finding only a solution near that starting value.
For example, in the 3-d figure I show a curve generated by a set of points in 3-d (in red), then I took another set of points that lay in a circle outside, I computed the closest point on the inner curve from each, drawing a line down to that curve. These points of minimum distance were generated by the scheme outlined above.
I just wanna give you a few hints, in for the case Q.B.Curve // segment :
to get a fast enough computation, i think you should first think about using a kind of 'bounding box' for your algorithm.
Say P0 is first point of the Q. B. Curve, P2 the second point, P1 the control point, and P3P4 the segment then :
Compute distance from P0, P1, P2 to P3P4
if P0 OR P2 is nearest point --> this is the nearest point of the curve from P3P4. end :=).
if P1 is nearest point, and Pi (i=0 or 1) the second nearest point, the distance beetween PiPC and P3P4 is an estimate of the distance you seek that might be precise enough, depending on your needs.
if you need to be more acurate : compute P1', which is the point on the Q.B.curve the nearest from P1 : you find it applying the BQC formula with t=0.5. --> distance from PiP1' to P3P4 is an even more accurate estimate -but more costly-.
Note that if the line defined by P1P1' intersects P3P4, P1' is the closest point of QBC from P3P4.
if P1P1' does not intersect P3P4, then you're out of luck, you must go the hard way...
Now if (and when) you need precision :
think about using a divide and conquer algorithm on the parameter of the curve :
which is nearest from P3P4 ?? P0P1' or P1'P2 ??? if it is P0P1' --> t is beetween 0 and 0.5 so compute Pm for t=0.25.
Now which is nearest from P3P4?? P0Pm or PmP1' ?? if it is PmP1' --> compute Pm2 for t=0.25+0.125=0.375 then which is nearest ? PmPm2 or Pm2P1' ??? etc
you will come to accurate solution in no time, like 6 iteration and your precision on t is 0.004 !! you might stop the search when distance beetween two points becomes below a given value. (and not difference beetwen two parameters, since for a little change in parameter, points might be far away)
in fact the principle of this algorithm is to approximate the curve with segments more and more precisely each time.
For the curve / curve case i would first 'box' them also to avoid useless computation, so first use segment/segment computation, then (maybe) segment/curve computation, and only if needed curve/curve computation.
For curve/curve, divide and conquer works also, more difficult to explain but you might figure it out. :=)
hope you can find your good balance for speed/accuracy with this :=)
Edit : Think i found for the general case a nice solution :-)
You should iterate on the (inner) bounding triangles of each B.Q.C.
So we have Triangle T1, points A, B, C having 't' parameter tA, tB, tC.
and Triangle T2, points D, E, F, having t parameter tD, tE, tF.
Initially we have tA=0 tB=0.5 tC= 1.0 and same for T2 tD=0, tE=0.5, tF=1.0
The idea is to call a procedure recursivly that will split T1 and/or T2 into smaller rectangles until we are ok with the precision reached.
The first step is to compute distance from T1 from T2, keeping track of with segments were the nearest on each triangle. First 'trick': if on T1 the segment is AC, then stop recursivity on T1, the nearest point on Curve 1 is either A or C. if on T2 the nearest segment is DF, then stop recursivity on T2, the nearest point on Curve2 is either D or F. If we stopped recursivity for both -> return distance = min (AD, AF, CD, CF). then if we have recursivity on T1, and segment AB is nearest, new T1 becomes : A'=A B= point of Curve one with tB=(tA+tC)/2 = 0.25, C=old B. same goes for T2 : apply recursivityif needed and call same algorithm on new T1 and new T2. Stop algorithm when distance found beetween T1 and T2 minus distance found beetween previous T1 and T2 is below a threshold.
the function might look like ComputeDistance(curveParam1, A, C, shouldSplitCurve1, curveParam2, D, F, shouldSplitCurve2, previousDistance) where points store also their t parameters.
note that distance (curve, segment) is just a particular case of this algorithm, and that you should implement distance (triangle, triangle) and distance (segment, triangle) to have it worked. Have fun.
1.Simple bad method - by iteration go by point from first curve and go by point from second curve and get minimum
2.Determine math function of distance between curves and calc limit of this function like:
|Fcur1(t)-Fcur2(t)| ->0
Fs is vector.
I think we can calculate the derivative of this for determine extremums and get nearest and farest points
I think about this some time later, and post full response.
Formulate your problem in terms of standard analysis: You have got a quantity to minimize (distance), so you formulate an equation for this quantity and find the points where the first derivatives are zero. Parameterize with a single parameter by using the curve's parameter p, which is between 0 for the first point and 1 for the last point.
In the line case, the equation is fairly simple: Get the x/y coordinates from the spline's equation and compute the distance to the given line via vector equations (scalar product with the line's normal).
In the curve's case, the analytical solution could get pretty complicated. You might want to use a numerical minimization technique such as Nelder-Mead or, since you have a 1D continuous problem, simple bisection.
In the case of a Bézier curve and a line
There are three candidates for the closest point to the line:
The place on the Bézier curve segment that is parallel to the line (if such a place exists),
One end of the curve segment,
The other end of the curve segment.
Test all three; the shortest distance wins.
In the case of two Bézier curves
Depends if you want the exact analytical result, or if an optimised numerical result is good enough.
Analytical result
Given two Bézier curves A(t) and B(s), you can derive equations for their local orientation A'(t) and B'(s). The point pairs for which A'(t) = B'(s) are candidates, i.e. the (t, s) for which the curves are locally parallel. I haven't checked, but I assume that A'(t) - B'(s) = 0 can be solved analytically. If your curves are anything like those you show in your example, there should be either only one solution or no solution to that equation, but there could be two (or infinitely many in the case where the curves identical but translated -- in which case you can ignore this because the winner will always be one of the curve segment endpoints).
In an approach similar to the curve-line case outline above, test each of these point pairs, plus the curve segment endpoints. The shortest distance wins.
Numerical result
Let's say the points on the two Bézier curves are defined as A(t) and B(s). You want to minimize the distance d( t, s) = |A(t) - B(s)|. It's a simple two-parameter optimization problem: find the s and t that minimize d( t, s) with the constraints 0 ≤ t ≤ 1 and 0 ≤ s ≤ 1.
Since d = SQRT( ( xA - xB)² + (yA - yB)²), you can also just minimize the function f( t, s) = [d( t, s)]² to save a square root calculation.
There are numerous ready-made methods for such optimization problems. Pick and choose.
Note that in both cases above, anything higher-order than quadratic Bézier curves can giver you more than one local minimum, so this is something to watch out for. From the examples you give, it looks like your curves have no inflexion points, so this concern may not apply in your case.
The point where there normals match is their nearest point. I mean u draw a line orthogonal to the line. .if that line is orthogonal to the curve as well then the point of intersection is the nearest point
I have two sequences of length n and m. Each is a sequence of points of the form (x,y) and represent curves in an image. I need to find how different (or similar) these sequences are given that fact that
one sequence is likely longer than the other (i.e., one can be half or a quarter as long as the other, but if they trace approximately the same curve, they are the same)
these sequences could be in opposite directions (i.e., sequence 1 goes from left to right, while sequence 2 goes from right to left)
I looked into some difference estimates like Levenshtein as well as edit-distances in structural similarity matching for protein folding, but none of them seem to do the trick. I could write my own brute-force method but I want to know if there is a better way.
Thanks.
Do you mean that you are trying to match curves that have been translated in x,y coordinates? One technique from image processing is to use chain codes [I'm looking for a decent reference, but all I can find right now is this] to encode each sequence and then compare those chain codes. You could take the sum of the differences (modulo 8) and if the result is 0, the curves are identical. Since the sequences are of different lengths and don't necessarily start at the same relative location, you would have to shift one sequence and do this again and again, but you only have to create the chain codes once. The only way to detect if one of the sequences is reversed is to try both the forward and reverse of one of the sequences. If the curves aren't exactly alike, the sum will be greater than zero but it is not straightforward to tell how different the curves are simply from the sum.
This method will not be rotationally invariant. If you need a method that is rotationally invariant, you should look at Boundary-Centered Polar Encoding. I can't find a free reference for that, but if you need me to describe it, let me know.
A method along these lines might work:
For both sequences:
Fit a curve through the sequence. Make sure that you have a continuous one-to-one function from [0,1] to points on this curve. That is, for each (real) number between 0 and 1, this function returns a point on the curve belonging to it. By tracing the function for all numbers from 0 to 1, you get the entire curve.
One way to fit a curve would be to draw a straight line between each pair of consecutive points (it is not a nice curve, because it has sharp bends, but it might be fine for your purpose). In that case, the function can be obtained by calculating the total length of all the line segments (Pythagoras). The point on the curve corresponding to a number Y (between 0 and 1) corresponds to the point on the curve that has a distance Y * (total length of all line segments) from the first point on the sequence, measured by traveling over the line segments (!!).
Now, after we have obtained such a function F(double) for the first sequence, and G(double) for the second sequence, we can calculate the similarity as follows:
double epsilon = 0.01;
double curveDistanceSquared = 0.0;
for(double d=0.0;d<1.0;d=d+epsilon)
{
Point pointOnCurve1 = F(d);
Point pointOnCurve2 = G(d);
//alternatively, use G(1.0-d) to check whether the second sequence is reversed
double distanceOfPoints = pointOnCurve1.EuclideanDistance(pointOnCurve2);
curveDistanceSquared = curveDistanceSquared + distanceOfPoints * distanceOfPoints;
}
similarity = 1.0/ curveDistanceSquared;
Possible improvements:
-Find an improved way to fit the curves. Note that you still need the function that traces the curve for the above method to work.
-When calculating the distance, consider reparametrizing the function G in such a way that the distance is minimized. (This means you have an increasing function R, such that R(0) = 0 and R(1)=1,
but which is otherwise general. When calculating the distance you use
Point pointOnCurve1 = F(d);
Point pointOnCurve2 = G(R(d));
Subsequently, you try to choose R in such a way that the distance is minimized. (to see what happens, note that G(R(d)) also traces the curve)).
Why not do some sort of curve fitting procedure (least-squares whether it be ordinary or non-linear) and see if the coefficients on the shape parameters are the same. If you run it as a panel-data sort of model, there are explicit statistical tests whether sets of parameters are significantly different from one another. That would solve the problem of the the same curve but sampled at different resolutions.
Step 1: Canonicalize the orientation. For example, let's say that all curved start at the endpoint with lowest lexicographic order.
def inCanonicalOrientation(path):
return path if path[0]<path[-1] else reversed(path)
Step 2: You can either be roughly accurate, or very accurate. If you wish to be very accurate, calculate a spline, or fit both curves to a polynomial of appropriate degree, and compare coefficients. If you'd like just a rough estimate, do as follows:
def resample(path, numPoints)
pathLength = pathLength(path) #write this function
segments = generateSegments(path)
currentSegment = next(segments)
segmentsSoFar = [currentSegment]
for i in range(numPoints):
samplePosition = i/(numPoints-1)*pathLength
while samplePosition > pathLength(segmentsSoFar)+currentSegment.length:
currentSegment = next(segments)
segmentsSoFar.insert(currentSegment)
difference = samplePosition - pathLength(segmentsSoFar)
howFar = difference/currentSegment.length
yield Point((1-howFar)*currentSegment.start + (howFar)*currentSegment.end)
This can be modified from a linear resampling to something better.
def error(pathA, pathB):
pathA = inCanonicalOrientation(pathA)
pathB = inCanonicalOrientation(pathB)
higherResolution = max([len(pathA), len(pathB)])
resampledA = resample(pathA, higherResolution)
resampledB = resample(pathA, higherResolution)
error = sum(
abs(pointInA-pointInB)
for pointInA,pointInB in zip(pathA,pathB)
)
averageError = error / len(pathAorB)
normalizedError = error / Z(AorB)
return normalizedError
Where Z is something like the "diameter" of your path, perhaps the maximum Euclidean distance between any two points in a path.
I would use a curve-fitting procedure, but also throw in a constant term, i.e. 0 =B0 + B1*X + B2*Y + B3*X*Y + B4*X^2 etc. This would catch the translational variance and then you can do a statistical comparison of the estimated coefficients of the curves formed by the two sets of points as a way of classifying them. I'm assuming you'll have to do bi-variate interpolation if the data form arbitrary curves in the x-y plane.