comparing and finding overlap range in R - r

I have two tables where each of them including range of numbers. one table is subdivision of the other. I want to create binary column in the first table which shows in which range they are overlapped.
for example:
df1:
start1 end1
1 6
6 8
9 12
13 15
15 19
19 20
df2:
start2 end2
2 4
9 11
14 18
result: the result is the first table with column that shows if the overlap exists.
start1 end1 overlap
1 6 1
6 8 0
9 12 1
13 15 1
15 19 1
19 20 0
thanks.

You may also try foverlaps from data.table
library(data.table)
setkey(setDT(df1), start1, end1)
setkey(setDT(df2), start2, end2)
df1[,overlap:=foverlaps(df1, df2, which=TRUE)[, !is.na(yid),]+0]
df1
# start1 end1 overlap
#1: 1 6 1
#2: 6 8 0
#3: 9 12 1
#4: 13 15 1
#5: 15 19 1
#6: 19 20 0

With IRanges
library(IRanges)
ir1 = with(df1, IRanges(start1, end1))
ir2 = with(df2, IRanges(start2, end2))
df1$overlap = countOverlaps(ir1, ir2) != 0
If on the off chance this is genomic data, the GenomicRanges packages is appropriate.

Here's an approach based on generating sequences:
nums <- unlist(apply(df2, 1, Reduce, f = seq))
df1$overlap <- as.integer(apply(df1, 1, function(x) any(seq(x[1], x[2]) %in% nums)))
# start1 end1 overlap
# 1 1 6 1
# 2 6 8 0
# 3 9 12 1
# 4 13 15 1
# 5 15 19 1
# 6 19 20 0

You can use the ivs package, which is a package specifically about interval vectors. iv_overlaps() returns a logical vector that specifies if each interval of the column from df1 overlaps any interval from df2.
library(dplyr)
library(ivs)
df1 <- tribble(
~start1, ~end1,
1, 6,
6, 8,
9, 12,
13, 15,
15, 19,
19, 20
)
df2 <- tribble(
~start2, ~end2,
2, 4,
9, 11,
14, 18
)
df1 <- mutate(df1, range1 = iv(start1, end1), .keep = "unused")
df2 <- mutate(df2, range2 = iv(start2, end2), .keep = "unused")
df1 %>%
mutate(any_overlap = iv_overlaps(range1, df2$range2))
#> # A tibble: 6 × 2
#> range1 any_overlap
#> <iv<dbl>> <lgl>
#> 1 [1, 6) TRUE
#> 2 [6, 8) FALSE
#> 3 [9, 12) TRUE
#> 4 [13, 15) TRUE
#> 5 [15, 19) TRUE
#> 6 [19, 20) FALSE

Related

R dataframe with special cumsum

I have a dateframe like this:
df <- data.frame(grp = c(rep("a", 5), rep("b", 5)), t = c(1:5, 1:5), value = c(-1, 5, 9, -15, 6, 5, 1, 7, -11, 9))
# Limits for desired cumulative sum (CumSum)
maxCumSum <- 8
minCumSum <- 0
What I would like to calculate is a cumulative sum of value by group (grp) within the values of maxCumSum and minCumSum. The respective table dt2 should look something like this:
grp t value CumSum
a 1 -1 0
a 2 5 5
a 3 9 8
a 4 -15 0
a 5 6 6
b 1 5 5
b 2 1 6
b 3 7 8
b 4 -11 0
b 5 9 8
Think of CumSum as a water storage with has a certain maximum capacity and the level of which cannot sink below zero.
The normal cumsum does obviously not do the trick since there are no limitations to maximum or minimum. Has anyone a suggestion how to achieve this? In the real dataframe there are of course more than 2 groups and far more than 5 times.
Many thanks!
What you can do is create a function which calculate the cumsum until it reach the max value and start again at the min value like this:
df <- data.frame(grp = c(rep("a", 5), rep("b", 5)), t = c(1:5, 1:5), value = c(-1, 5, 9, -15, 6, 5, 1, 7, -11, 9))
library(dplyr)
maxCumSum <- 8
minCumSum <- 0
f <- function(x, y) max(min(x + y, maxCumSum), minCumSum)
df %>%
group_by(grp) %>%
mutate(CumSum = Reduce(f, value, 0, accumulate = TRUE)[-1])
#> # A tibble: 10 × 4
#> # Groups: grp [2]
#> grp t value CumSum
#> <chr> <int> <dbl> <dbl>
#> 1 a 1 -1 0
#> 2 a 2 5 5
#> 3 a 3 9 8
#> 4 a 4 -15 0
#> 5 a 5 6 6
#> 6 b 1 5 5
#> 7 b 2 1 6
#> 8 b 3 7 8
#> 9 b 4 -11 0
#> 10 b 5 9 8
Created on 2022-07-04 by the reprex package (v2.0.1)

How to a create a new dataframe of consolidated values from multiple columns in R

I have a dataframe, df1, that looks like the following:
sample
99_Ape_1
93_Cat_1
87_Ape_2
84_Cat_2
90_Dog_1
92_Dog_2
A
2
3
1
7
4
6
B
5
9
7
0
3
7
C
6
8
9
2
3
0
D
3
9
0
5
8
3
I want to consolidate the dataframe by summing the values based on animal present in the header row, i.e. by "Ape", "Cat", "Dog", and end up with the following dataframe:
sample
Ape
Cat
Dog
A
3
10
10
B
12
9
10
C
15
10
3
D
3
14
11
I have created a list that represents all the animals called "animals_list"
I have then created a list of dataframes that subsets each animal into a separate dataframe with:
animals_extract <- c()
for (i in 1:length(animals_list)){
species_extract[[i]] <- df1[, grep(animals_list[i], names(df1))]
}
I am then trying to sum each variable in the row by sample:
for (i in 1:length(species_extract)){
species_extract[[i]]$total <- rowSums(species_extract[[i]])
}
and then create a dataframe 'animal_total' by binding all values in the new 'total' column.
animal_total <- NULL
for (i in 1:length(species_extract)){
animal_total[i] <- cbind(species_extract[[i]]$total)
}
Unfortunately, this doesn't seem to work at all and I think I may have taken the wrong route. Any help would be really appreciated!
EDIT: my dataframe has over 300 animals, meaning incorporating use of my list of identifiers (animals_list) would be highly appreciated! I would also note that some column names do not follow the structure, "number_animal_number" and therefore I can't use a repetitive search (sorry!).
a data.table approach
library(data.table)
library(rlist)
#set data to data.table format
setDT(df1)
# split column 2:n by regex on column names
L <- split.default(df1[,-1], gsub(".*_(.*)_.*", "\\1", names(df1)[-1]))
# Bind together again
data.table(sample = df1$sample,
as.data.table(list.cbind(lapply(L, rowSums))))
# sample Ape Cat Dog
# 1: A 3 10 10
# 2: B 12 9 10
# 3: C 15 10 3
# 4: D 3 14 11
Update: After clarification:
This may work depending on the other names of your animals. but this is a start:
library(dplyr)
library(tidyr)
df %>%
pivot_longer(
cols = -sample
) %>%
mutate(name1 = str_extract(name, '(?<=\\_)(.*?)(?=\\_)')) %>%
group_by(sample, name1) %>%
summarise(sum=sum(value)) %>%
pivot_wider(
names_from = name1,
values_from= sum
)
Output:
sample Ape Cat Dog
<chr> <int> <int> <int>
1 A 3 10 10
2 B 12 9 10
3 C 15 10 3
4 D 3 14 11
First answer:
Here is how we could do it with dplyr:
library(dplyr)
df %>%
mutate(Cat = rowSums(select(., contains("Cat"))),
Ape = rowSums(select(., contains("Ape"))),
Dog = rowSums(select(., contains("Dog")))) %>%
select(sample, Cat, Ape, Dog)
sample Ape Cat Dog
<chr> <int> <int> <int>
1 A 3 10 10
2 B 12 9 10
3 C 15 10 3
4 D 3 14 11
An alternative data.table solution
library(data.table)
# Construct data table
dt <- as.data.table(list(sample = c("A", "B", "C", "D"),
`99_Ape_1` = c(2, 5, 6, 3),
`93_Cat_1` = c(3, 9, 8, 9),
`87_Ape_2` = c(1, 7, 9, 0),
`84_Cat_2` = c(7, 0, 2, 5),
`90_Dog_1` = c(4, 3, 3, 8),
`92_Dog_2` = c(6, 7, 0, 3)))
# Alternatively convert existing dataframe
# dt <- setDT(df)
# Use Regex pattern to drop ids from column names
names(dt) <- gsub("((^[0-9_]{3})|(_[0-9]{1}$))", "", names(dt))
# Pivot long (columns to rows)
dt <- melt(dt, id.vars = "sample")
# Aggregate sample by variable
dt <- dt[, .(value=sum(value)), by=.(sample, variable)]
# Unpivot (rows to colums)
dcast(dt, sample ~ variable)
# sample Ape Cat Dog
# 1: A 3 10 10
# 2: B 12 9 10
# 3: C 15 10 3
# 4: D 3 14 11
Alternatively, leaving the column names as is (after comment from OP to previous answer) and assuming that there are multiple observations of the same samples:
dt <- as.data.table(list(sample = c("A", "B", "C", "D", "A"),
`99_Ape_1` = c(2, 5, 6, 3, 1),
`93_Cat_1` = c(3, 9, 8, 9, 1),
`87_Ape_2` = c(1, 7, 9, 0, 1),
`84_Cat_2` = c(7, 0, 2, 5, 1),
`90_Dog_1` = c(4, 3, 3, 8, 1),
`92_Dog_2` = c(6, 7, 0, 3, 1)))
dt
# sample 99_Ape_1 93_Cat_1 87_Ape_2 84_Cat_2 90_Dog_1 92_Dog_2
# 1: A 2 3 1 7 4 6
# 2: B 5 9 7 0 3 7
# 3: C 6 8 9 2 3 0
# 4: D 3 9 0 5 8 3
# 5: A 1 1 1 1 1 1
# Pivot long (columns to rows)
dt <- melt(dt, id.vars = "sample")
# Aggregate sample by variable
dt <- dt[, .(value=sum(value)), by=.(sample, variable)]
# Unpivot (rows to colums)
dcast(dt, sample ~ variable)
# sample 99_Ape_1 93_Cat_1 87_Ape_2 84_Cat_2 90_Dog_1 92_Dog_2
# 1: A 3 4 2 8 5 7
# 2: B 5 9 7 0 3 7
# 3: C 6 8 9 2 3 0
# 4: D 3 9 0 5 8 3

Mutating column to dataframe using apply function by group

I am trying to use the apply function to rows within a grouped dataframe to check for the existence of other rows within that group that match certain conditions dependent on each row. I am able to get this to work for one group but not for all.
For example, with no grouping:
library(dplyr)
id <- c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2)
station <- c(1, 2, 3, 3, 2, 2, 1, 1, 3, 2, 2)
timeslot <- c(13, 14, 20, 21, 24, 23, 8, 9, 10, 15, 16)
df <- data.frame(id, station, timeslot)
s <- 2
df <-
df %>%
filter(id == 1) %>%
arrange(id, timeslot) %>%
mutate(match = ifelse(station == s, apply(., 1, function(x) (any(as.numeric(x[3] + 1) == .$timeslot))), FALSE))
id station timeslot match
1 1 1 13 FALSE
2 1 2 14 FALSE
3 1 3 20 FALSE
4 1 3 21 FALSE
5 1 2 23 TRUE
6 1 2 24 FALSE
In the above code, for each station 2 row, I am trying to check all other rows to see if there exists a timeslot with a value of one greater (for any station). This works as expected.
Then, I go on to apply this to a grouped dataframe:
df <-
df %>%
group_by(id) %>%
arrange(id, timeslot) %>%
mutate(match = ifelse(station == s, apply(., 1, function(x) (any(as.numeric(x[3] + 1) == .$timeslot))), FALSE))
id station timeslot match
<int> <int> <int> <lgl>
1 1 1 13 FALSE
2 1 2 14 TRUE
3 1 3 20 FALSE
4 1 3 21 FALSE
5 1 2 23 TRUE
6 1 2 24 FALSE
7 2 1 8 FALSE
8 2 1 9 FALSE
9 2 3 10 FALSE
10 2 2 15 FALSE
11 2 2 16 TRUE
and get some unwanted results. It seems like it is not applied by group and I can't figure out how to fix this. How can I apply this function so that only the other rows within a group are checked? In reality, my dataset is much bigger and the conditions are more complex, so it is not running quickly either.
Thanks in advance
Edit: I should add that I have also tried a solution using the arrange() and lead() function but since some timeslot values are shared by many stations in my larger dataset I could not get this to work
This seems to work:
df %>%
group_by(id) %>%
arrange(id, timeslot) %>%
mutate(match = station == s & ((timeslot + 1) %in% timeslot))
# # A tibble: 11 x 4
# # Groups: id [2]
# id station timeslot match
# <dbl> <dbl> <dbl> <lgl>
# 1 1 1 13 FALSE
# 2 1 2 14 FALSE
# 3 1 3 20 FALSE
# 4 1 3 21 FALSE
# 5 1 2 23 TRUE
# 6 1 2 24 FALSE
# 7 2 1 8 FALSE
# 8 2 1 9 FALSE
# 9 2 3 10 FALSE
# 10 2 2 15 TRUE
# 11 2 2 16 FALSE
My sincere apologies if I understood the question wrong. This does what I understand from the question:
df$match = apply(df, 1, function(line) any(df$id == line[1] &
df$station == line[2] &
df$timeslot == line[3] + 1))
The result then is
id station timeslot match
1 1 1 13 FALSE
2 1 2 14 FALSE
3 1 3 20 TRUE
4 1 3 21 FALSE
5 1 2 24 FALSE
6 1 2 23 TRUE
7 2 1 8 TRUE
8 2 1 9 FALSE
9 2 3 10 FALSE
10 2 2 15 TRUE
11 2 2 16 FALSE

shift a column with lagged data from other column and enlarge data frame as needed

I have a data frame with values and I need a new column with shifted values some rows down but data frame has to get more rows to accommodate the shifted data.
What I've got so far:
df <- data.frame(day=1:5,value=floor(runif(5, min=0, max=101)))
> df %>% dplyr::mutate(value2=dplyr::lag(value,n=2, default = 0))
day value value2
1 1 19 0
2 2 78 0
3 3 18 19
4 4 14 78
5 5 10 18
Expected result:
day value value2
1 1 19 0
2 2 78 0
3 3 18 19
4 4 14 78
5 5 10 18
6 6 0 14
7 7 0 10
Stuck on making the data frame grow the needed rows.
Here's a way with dplyr -
df %>%
bind_rows(
tail(df, 2) %>%
mutate(day = day + 2, value = 0)
) %>%
mutate(value2 = lag(value, 2, default = 0))
day value value2
1 1 19 0
2 2 78 0
3 3 18 19
4 4 14 78
5 5 10 18
6 6 0 14
7 7 0 10
Use a merge. Create the "target" dataset with however many rows you want, fill in NA values with 0, then remap the lagged value onto "value2". It's useful to store "lag" as a variable, at the risk of being more verbose.
have <- data.frame(
day= 1:5,
value = c(19, 78, 18, 14, 10),
value2 = c(0, 0, 19, 78, 18)
)
target <- data.frame(
day=1:7
)
want <- merge(have, target, by='day', all=T)
want[is.na(want)] <- 0
lag <- 2
## just one way of mapping a lagged response
want$value2 <- c(rep(0, lag), rev(rev(want$value)[-{1:lag}]))

Count number of times in a month and year that time series data is above a threshold

I have a large dataframe in R with daily time series data of rainfall for a number of locations (each in their own column). I would like to know the number of times the rainfall is less than, or is greater than a threshold value for each location in each month and also by year.
My dataframe is large so I have provided example data here:
Date_ex <- seq.Date(as.Date('2000-01-01'),as.Date('2005-01-31'),by = 1)
A <- sample(x = c(1, 3, 5), size = 1858, replace = TRUE)
B <- sample(x = c(1, 2, 10), size = 1858, replace = TRUE)
C <- sample(x = c(1, 3, 5), size = 1858, replace = TRUE)
D <- sample(x = c(1, 3, 4), size = 1858, replace = TRUE)
df <- data.frame(Date_ex, A, B, C, D)
How would I find out the number of times the value in A, B, C and D is greater than 4 for each month and then also for each year.
I think I should then be able to summarise this into two new tables.
One like this (example, ignore numbers):
A B C D
2000-01 1 0 5 0
2000-02 2 16 25 0
2000-03 1 5 26 0
And one like this (example, ignore numbers):
A B C D
2000 44 221 67 0
2001 67 231 4 132
2002 99 111 66 4
2003 33 45 45 4
I think I should be using dplyr for this? But I'm not sure how to get the dates to work.
A solution using the dplyr and lubridate package. The key is to create Year and Month columns, group by those columns, and use summarise_all to summarize the data.
# Create the example data frame, set the seed for reproducibility
set.seed(199)
Date_ex <- seq.Date(as.Date('2000-01-01'),as.Date('2005-01-31'),by = 1)
A <- sample(x = c(1, 3, 5), size = 1858, replace = TRUE)
B <- sample(x = c(1, 2, 10), size = 1858, replace = TRUE)
C <- sample(x = c(1, 3, 5), size = 1858, replace = TRUE)
D <- sample(x = c(1, 3, 4), size = 1858, replace = TRUE)
df <- data.frame(Date_ex, A, B, C, D)
library(dplyr)
library(lubridate)
# Summarise for each month
df2 <- df %>%
mutate(Year = year(Date_ex), Month = month(Date_ex)) %>%
select(-Date_ex) %>%
group_by(Year, Month) %>%
summarise_all(funs(sum(. > 4))) %>%
ungroup()
df2
# # A tibble: 61 x 6
# Year Month A B C D
# <dbl> <dbl> <int> <int> <int> <int>
# 1 2000 1 13 8 13 0
# 2 2000 2 12 7 8 0
# 3 2000 3 7 9 9 0
# 4 2000 4 9 12 10 0
# 5 2000 5 11 12 8 0
# 6 2000 6 12 9 16 0
# 7 2000 7 10 11 10 0
# 8 2000 8 8 12 14 0
# 9 2000 9 12 12 12 0
# 10 2000 10 9 9 7 0
# # ... with 51 more rows
# Summarise for each year and month
df3 <- df %>%
mutate(Year = year(Date_ex)) %>%
select(-Date_ex) %>%
group_by(Year) %>%
summarise_all(funs(sum(. > 4)))
df3
# # A tibble: 6 x 5
# Year A B C D
# <dbl> <int> <int> <int> <int>
# 1 2000 120 119 125 0
# 2 2001 119 123 113 0
# 3 2002 135 122 105 0
# 4 2003 114 112 104 0
# 5 2004 115 125 124 0
# 6 2005 9 14 11 0
Here are a few solutions.
1) aggregate This solution uses only base R. The new Date column is the date for the first of the month or first of the year.
aggregate(df[-1] > 4, list(Date = as.Date(cut(df[[1]], "month"))), sum)
aggregate(df[-1] > 4, list(Date = as.Date(cut(df[[1]], "year"))), sum)
1a) Using yearmon class from zoo and toyear from (3) we can write:
library(zoo)
aggregate(df[-1] > 4, list(Date = as.yearmon(df[[1]])), sum)
aggregate(df[-1] > 4, list(Date = toyear(df[[1]])), sum)
2) rowsum This is another base R solution. The year/month or year is given by the row names.
rowsum((df[-1] > 4) + 0, format(df[[1]], "%Y-%m"))
rowsum((df[-1] > 4) + 0, format(df[[1]], "%Y"))
2a) Using yearmon class from zoo and toyear from (3) we can write:
library(zoo)
rowsum((df[-1] > 4) + 0, as.yearmon(df[[1]]))
rowsum((df[-1] > 4) + 0, toyear(df[[1]]))
3) aggregate.zoo Convert to a zoo object and use aggregate.zoo. Note that yearmon class internally represents a year and month as the year plus 0 for Jan, 1/12 for Feb, 2/12 for March, etc. so taking the integer part gives the year.
library(zoo)
z <- read.zoo(df)
aggregate(z > 4, as.yearmon, sum)
toyear <- function(x) as.integer(as.yearmon(x))
aggregate(z > 4, toyear, sum)
The result is a zoo time series with a yearmon index in the first case and an integer index in the second. If you want a data frame use fortify.zoo(ag) where ag is the result of aggregate.
4) dplyr toyear is from (3).
library(dplyr)
library(zoo)
df %>%
group_by(YearMonth = as.yearmon(Date_ex)) %>%
summarize_all(funs(sum)) %>%
ungroup
df %>%
group_by(Year = toyear(Date_ex)) %>%
summarize_all(funs(sum)) %>%
ungroup
Data.table is missing so I'm adding this. Comments are in the code. I used set.seed(1) to generate the samples.
library(data.table)
setDT(df)
# add year and month to df
df[, `:=`(month = month(Date_ex),
year = year(Date_ex))]
# monthly returns, remove date_ex
monthly_dt <- df[,lapply(.SD, function(x) sum(x > 4)), by = .(year, month), .SDcols = -("Date_ex")]
year month A B C D
1: 2000 1 10 10 11 0
2: 2000 2 10 11 8 0
3: 2000 3 11 11 11 0
4: 2000 4 10 11 8 0
5: 2000 5 7 10 8 0
6: 2000 6 9 6 7 0
.....
# yearly returns, remove Date_ex and month
yearly_dt <- df[,lapply(.SD, function(x) sum(x > 4)), by = .(year), .SDcols = -c("Date_ex", "month")]
year A B C D
1: 2000 114 118 113 0
2: 2001 127 129 120 0
3: 2002 122 108 126 0
4: 2003 123 128 125 0
5: 2004 123 132 131 0
6: 2005 14 15 15 0

Resources