Averaging column values of a matrix in R - r

I have a matrix of 7000 rows x 160 columns, i want to take the average of 20 values in each row to make it 1 value i.e. column avg(1:20) = 1st new value, avg(21:40) = 2nd new value ..... avg(141:160) 8th and last new value for row 1, will do the same foe all rows, at the end my matrix will be 7000 x 8 ie. 160/20 = 8. what is the fastest way to archive this in R?
eg. at the end
1st 2 4 5 6 7 7 9 4
2nd 3 6 5 3 6 7 4 3
...............
7000th 5 6 7 4 5 6 7 6
i tried this, it works but too slow!
res <- matrix(T, nrow = 7000, ncol = 8)
for (i in 1:nrow(m)){
s <- 0
k <- 1
for (j in 1:ncol(m)){
s <- s + m[i,j]
if(j %% 20 == 0){
a <- s/20
res[i,k] <- a
k <- k + 1
s <- 0
}
}
}
Thank you.

# example - you have this already
set.seed(1) # for reproducible example
M <- matrix(rnorm(7000*160),nc=160)
# you start here...
indx <- rep(1:8,each=20)
result <- sapply(1:8,function(i)rowMeans(M[,which(indx==i)]))
head(result)
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
# [1,] 0.2127915 -0.38038950 -0.087656347 0.05933375 -0.23819112 0.03943897 -0.008970226 0.03841767
# [2,] 0.3548025 0.31491967 0.144773998 -0.05972595 -0.17191220 0.04243383 0.047314127 -0.16848104
# [3,] -0.2559990 0.35942642 0.003344486 0.23424747 0.09022379 0.58685507 -0.157652263 -0.25611335
# [4,] 0.3723693 0.23901787 -0.304657019 0.41620451 0.26005406 0.09726225 -0.434833656 0.07112657
# [5,] 0.4457805 0.08682639 0.048011727 0.15753612 0.30271061 -0.05484104 -0.103921787 -0.12066903
# [6,] -0.2823111 -0.00243217 0.055399402 0.31365508 0.17940294 0.26896135 -0.439110424 -0.30403590

Another way using rowsum and jlhoward's data ("M"):
n = 20
ans = t(rowsum(t(M), rep(seq_len(ncol(M) / n), each = n))) / n
head(ans)

Related

I have a table consists of many samples across many columns, how to substract the value of each sample in each column to the mean of their column? [duplicate]

I have a matrix with 5 columns and 4 rows. I also have a vector with 3 columns. I want to subtract the values in the vector from columns 3,4 and 5 respectively at each row of the matrix.
b <- matrix(rep(1:20), nrow=4, ncol=5)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
c <- c(5,6,7)
to get
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 4 7 10
[2,] 2 6 5 8 11
[3,] 3 7 6 9 12
[4,] 4 8 7 10 13
This is exactly what sweep was made for:
b <- matrix(rep(1:20), nrow=4, ncol=5)
x <- c(5,6,7)
b[,3:5] <- sweep(b[,3:5], 2, x)
b
# [,1] [,2] [,3] [,4] [,5]
#[1,] 1 5 4 7 10
#[2,] 2 6 5 8 11
#[3,] 3 7 6 9 12
#[4,] 4 8 7 10 13
..or even without subsetting or reassignment:
sweep(b, 2, c(0,0,x))
Perhaps not that elegant, but
b <- matrix(rep(1:20), nrow=4, ncol=5)
x <- c(5,6,7)
b[,3:5] <- t(t(b[,3:5])-x)
should do the trick. We subset the matrix to change only the part we need, and we use t() (transpose) to flip the matrix so simple vector recycling will take care of subtracting from the correct row.
If you want to avoid the transposed, you could do something like
b[,3:5] <- b[,3:5]-x[col(b[,3:5])]
as well. Here we subset twice, and we use the second to get the correct column for each value in x because both those matrices will index in the same order.
I think my favorite from the question that #thelatemail linked was
b[,3:5] <- sweep(b[,3:5], 2, x, `-`)
Another way, with apply:
b[,3:5] <- t(apply(b[,3:5], 1, function(x) x-c))
A simple solution:
b <- matrix(rep(1:20), nrow=4, ncol=5)
c <- c(5,6,7)
for(i in 1:nrow(b)) {
b[i,3:5] <- b[i,3:5] - c
}
This can be done with the rray package in a very satisfying way (using its (numpy-like) broadcasting - operator %b-%):
#install.packages("rray")
library(rray)
b <- matrix(rep(1:20), nrow=4, ncol=5)
x <- c(5, 6, 7)
b[, 3:5] <- b[, 3:5] %b-% matrix(x, 1)
b
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1 5 4 7 10
#> [2,] 2 6 5 8 11
#> [3,] 3 7 6 9 12
#> [4,] 4 8 7 10 13
For large matrices this is even faster than sweep:
#install.packages("bench")
res <- bench::press(
size = c(10, 1000, 10000),
frac_selected = c(0.1, 0.5, 1),
{
B <- matrix(sample(size*size), nrow=size, ncol=size)
B2 <- B
x <- sample(size, size=ceiling(size*frac_selected))
idx <- sample(size, size=ceiling(size*frac_selected))
bench::mark(rray = {B2[, idx] <- B[, idx, drop = FALSE] %b-% matrix(x, nrow = 1); B2},
sweep = {B2[, idx] <- sweep(B[, idx, drop = FALSE], MARGIN = 2, x); B2}
)
}
)
plot(res)

Vector to sliding matrix in R

I am trying to create a function that takes a vector and creates two sliding matrix, like bellow:
Input, Output
[d01, d02, d03, d04, d05, d06, d07], [d08, d09, d10, d11, d12, d13, d14]
[d02, d03, d04, d05, d06, d07, d08], [d09, d10, d11, d12, d13, d14, d15]
...
I tried to adapt a Python code to R but I am having some problems and I cannot find the error (I am not used to R)
This is the R code:
create_dataset = function(data, n_input, n_out){
dataX = c()
dataY = c()
in_start = 0
for (i in 1:range(length(data))) {
#define the end of the input sequence
in_end = in_start + n_input
out_end = in_end + n_out
if(out_end <= length(data)){
x_input = data[in_start:in_end, 1]
X = append(x_input)
y = append(data[in_end:out_end], 1)
}
#move along one time step
in_start = in_start + 1
}
X; Y
}
I got this error when calling this function
> create_dataset(data, n_input = 5, n_out = 5)
Error in data[in_start:in_end, 1] : incorrect number of dimensions
In addition: Warning message:
In 1:range(length(data)) :
numerical expression has 2 elements: only the first used
EDIT:
Adding the Python code I trying to adapt to R
# convert history into inputs and outputs
def to_supervised(train, n_input, n_out):
X, y = list(), list()
in_start = 0
# step over the entire history one time step at a time
for _ in range(len(data)):
# define the end of the input sequence
in_end = in_start + n_input
out_end = in_end + n_out
# ensure we have enough data for this instance
if out_end <= len(data):
x_input = data[in_start:in_end, 0]
x_input = x_input.reshape((len(x_input), 1))
X.append(x_input)
y.append(data[in_end:out_end, 0])
# move along one time step
in_start += 1
return array(X), array(y)
Here are two approaches. Also see Lagging time series data
1) Normally in R one takes the whole object approach rather than iterating over indexes. Now, assuming inputs v, k1 and k2 we compute e as the sliding matrix with k1+k2 columns. Then first k1 columns is the first matrix and the remaining columns is the second.
# inputs
v <- 1:12 # 1, 2, ..., 12
k1 <- k2 <- 3
k <- k1 + k2
e <- embed(v, k)[, k:1]
ik1 <- 1:k1
e[, ik1]
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 2 3 4
## [3,] 3 4 5
## [4,] 4 5 6
## [5,] 5 6 7
## [6,] 6 7 8
## [7,] 7 8 9
e[, -ik1]
## [,1] [,2] [,3]
## [1,] 4 5 6
## [2,] 5 6 7
## [3,] 6 7 8
## [4,] 7 8 9
## [5,] 8 9 10
## [6,] 9 10 11
## [7,] 10 11 12
2) Regarding the R code in the question:
in R the range function takes a vector input and returns a 2 element vector of the minimum and maximum so it is not what is wanted in the for loop, use seq_along instead
indexes in R start at 1 rather than 0
the return value of a function must be a single object. We return a two element list of matrices.
iteratively appending to an object is inefficient in R. This can be addressed by preallocating the result or not using a loop; however, we don't address this problem below as we already have a better implementation above in (1).
there was inconsistent naming of variables in the question's code
Although this entire approach is not how one would normally write R software, in order to make the minimal changes to get it to work we can write the following.
# data is plain vector, n_input and n_out are scalars
# result is 2 element list of matrices
create_dataset = function(data, n_input, n_out){
X <- matrix(nrow = 0, ncol = n_input)
Y <- matrix(nrow = 0, ncol = n_out)
in_start <- 0
for (i in seq_along(data)) {
#define the end of the input sequence
in_end <- in_start + n_input
out_end <- in_end + n_out
if(out_end <= length(data)){
X <- rbind(X, data[(in_start+1):in_end])
Y <- rbind(Y, data[(in_end+1):out_end])
}
#move along one time step
in_start = in_start + 1
}
list(X, Y)
}
# inputs defined in (1)
create_dataset(v, k1, k2)
giving this two element list of matrices:
[[1]]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 3 4
[3,] 3 4 5
[4,] 4 5 6
[5,] 5 6 7
[6,] 6 7 8
[7,] 7 8 9
[[2]]
[,1] [,2] [,3]
[1,] 4 5 6
[2,] 5 6 7
[3,] 6 7 8
[4,] 7 8 9
[5,] 8 9 10
[6,] 9 10 11
[7,] 10 11 12

Find all combinations of a set of numbers that add up to a certain total

I've seen a few solutions to similar problems, but they all require iteration over the number of items to be added together.
Here's my goal: from a list of numbers, find all of the combinations (without replacement) that add up to a certain total. For example, if I have numbers 1,1,2,3,5 and total 5, it should return 5,2,3, and 1,1,3.
I was trying to use combn but it required you to specify the number of items in each combination. Is there a way to do it that allows for solution sets of any size?
This is precisely what combo/permuteGeneral from RcppAlgos (I am the author) were built for. Since we have repetition of specific elements in our sample vector, we will be finding combinations of multisets that meet our criteria. Note that this is different than the more common case of generating combinations with repetition where each element is allowed to be repeated m times. For many combination generating functions, multisets pose problems as duplicates are introduced and must be dealt with. This can become a bottleneck in your code if the size of your data is decently large. The functions in RcppAlgos handle these cases efficiently without creating any duplicate results. I should mention that there are a couple of other great libraries that handle multisets quite well: multicool and arrangements.
Moving on to the task at hand, we can utilize the constraint arguments of comboGeneral to find all combinations of our vector that meet a specific criteria:
vec <- c(1,1,2,3,5) ## using variables from #r2evans
uni <- unique(vec)
myRep <- rle(vec)$lengths
ans <- 5
library(RcppAlgos)
lapply(seq_along(uni), function(x) {
comboGeneral(uni, x, freqs = myRep,
constraintFun = "sum",
comparisonFun = "==",
limitConstraints = ans)
})
[[1]]
[,1]
[1,] 5
[[2]]
[,1] [,2]
[1,] 2 3
[[3]]
[,1] [,2] [,3]
[1,] 1 1 3
[[4]]
[,1] [,2] [,3] [,4] ## no solutions of length 4
These functions are highly optimized and extend well to larger cases. For example, consider the following example that would produce over 30 million combinations:
## N.B. Using R 4.0.0 with new updated RNG introduced in 3.6.0
set.seed(42)
bigVec <- sort(sample(1:30, 40, TRUE))
rle(bigVec)
Run Length Encoding
lengths: int [1:22] 2 1 2 3 4 1 1 1 2 1 ...
values : int [1:22] 1 2 3 4 5 7 8 9 10 11 ...
bigUni <- unique(bigVec)
bigRep <- rle(bigVec)$lengths
bigAns <- 199
len <- 12
comboCount(bigUni, len, freqs = bigRep)
[1] 32248100
All 300000+ results are returned very quickly:
system.time(bigTest <- comboGeneral(bigUni, len, freqs = bigRep,
constraintFun = "sum",
comparisonFun = "==",
limitConstraints = bigAns))
user system elapsed
0.273 0.004 0.271
head(bigTest)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 1 1 2 3 4 25 26 26 26 27 28 30
[2,] 1 1 2 3 5 24 26 26 26 27 28 30
[3,] 1 1 2 3 5 25 25 26 26 27 28 30
[4,] 1 1 2 3 7 24 24 26 26 27 28 30
[5,] 1 1 2 3 7 24 25 25 26 27 28 30
[6,] 1 1 2 3 7 24 25 26 26 26 28 30
nrow(bigTest)
[1] 280018
all(rowSums(bigTest) == bigAns)
[1] TRUE
Addendum
I must mention that generally when I see a problem like: "finding all combinations that sum to a particular number" my first thought is integer partitions. For example, in the related problem Getting all combinations which sum up to 100 in R, we can easily solve with the partitions library. However, this approach does not extend to the general case (as we have here) where the vector contains specific repetition or we have a vector that contains values that don't easily convert to an integer equivalent (E.g. the vector (0.1, 0.2, 0.3, 0.4) can easily be treated as 1:4, however treating c(3.98486 7.84692 0.0038937 7.4879) as integers and subsequently applying an integer partitions approach would require an extravagant amount of computing power rendering this method useless).
I took your combn idea and looped over the possible sizes of the sets.
func = function(x, total){
M = length(x)
y = NULL
total = 15
for (m in 1:M){
tmp = combn(x, m)
ind = which(colSums(tmp) == total)
if (length(ind) > 0){
for (j in 1:length(ind))
y = c(y, list(tmp[,ind[j]]))
}
}
return (unique(lapply(y, sort)))
}
x = c(1,1,2,3,5,8,13)
> func(x, 15)
[[1]]
[1] 2 13
[[2]]
[1] 1 1 13
[[3]]
[1] 2 5 8
[[4]]
[1] 1 1 5 8
[[5]]
[1] 1 1 2 3 8
Obviously, this will have problems as M grows since tmp will get big pretty quickly and the length of y can't be (maybe?) pre-determined.
Similar to mickey's answer, we can use combn inside another looping mechanism. I'll use lapply:
vec <- c(1,1,2,3,5)
ans <- 5
Filter(length, lapply(seq_len(length(vec)),
function(i) {
v <- combn(vec, i)
v[, colSums(v) == ans, drop = FALSE]
}))
# [[1]]
# [,1]
# [1,] 5
# [[2]]
# [,1]
# [1,] 2
# [2,] 3
# [[3]]
# [,1]
# [1,] 1
# [2,] 1
# [3,] 3
You can omit the Filter(length, portion, though it may return a number of empty matrices. They're easy enough to deal with and ignore, I just thought removing them would be aesthetically preferred.
This method gives you a matrix with multiple candidates in each column, so
ans <- 4
Filter(length, lapply(seq_len(length(vec)),
function(i) {
v <- combn(vec, i)
v[, colSums(v) == ans, drop = FALSE]
}))
# [[1]]
# [,1] [,2]
# [1,] 1 1
# [2,] 3 3
# [[2]]
# [,1]
# [1,] 1
# [2,] 1
# [3,] 2
If duplicates are a problem, you can always do:
Filter(length, lapply(seq_len(length(vec)),
function(i) {
v <- combn(vec, i)
v <- v[, colSums(v) == ans, drop = FALSE]
v[,!duplicated(t(v)),drop = FALSE]
}))
# [[1]]
# [,1]
# [1,] 1
# [2,] 3
# [[2]]
# [,1]
# [1,] 1
# [2,] 1
# [3,] 2
Now here is a solution involving gtools:
# Creating lists of all permutations of the vector x
df1 <- gtools::permutations(n=length(x),r=length(x),v=1:length(x),repeats.allowed=FALSE)
ls1 <- list()
for(j in 1:nrow(df1)) ls1[[j]] <- x[df1[j,1:ncol(df1)]]
# Taking all cumulative sums and filtering entries equaling our magic number
sumsCum <- t(vapply(1:length(ls1), function(j) cumsum(ls1[[j]]), numeric(length(x))))
indexMN <- which(sumsCum == magicNumber, arr.ind = T)
finalList <- list()
for(j in 1:nrow(indexMN)){
magicRow <- indexMN[j,1]
magicCol <- 1:indexMN[j,2]
finalList[[j]] <- ls1[[magicRow]][magicCol]
}
finalList <- unique(finalList)
where x = c(1,1,2,3,5) and magicNumber = 5. This is a first draft, I am sure it can be improved here and there.
Not the most efficient but the most compact so far:
x <- c(1,1,2,3,5)
n <- length(x)
res <- 5
unique(combn(c(x,rep(0,n-1)), n, function(x) x[x!=0][sum(x)==res], FALSE))[-1]
# [[1]]
# [1] 1 1 3
#
# [[2]]
# [1] 2 3
#
# [[3]]
# [1] 5
#

Matrix without the matrix function

I m trying to create a matrix in R without using matrix function I tried
this but it works just for 2 rows how do I specify nrows I have no idea
matrix2<-function(n)
{
d<-n/2
v1<-c(1:d)
v2<-c(d +1:n)
x<- rbind(v1,v2)
return(x)
}
I want to create a matrix without using the matrix function and byrow not bycolmun
exemple
a function I enter number of columns and the dimension N in my exemple and in return it creates a matrix
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
for exepmle
This will give you a matrix for a specified number of columns. I wasn't sure what you meant with dimension N.
matrix2 <- function(N, columns){
d<-ceiling(N/columns) # rounds up to first integer
x <- c()
i <- 1
for(row in 1:d){
x <- rbind(x, c(i:(i+columns-1)))
i <- i+columns
}
return(x)
}
> matrix2(8,2)
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
You can also use an indirection via a list. Then you can also set both, the column and the row number. And how the matrix is filled, row wise or column wise.
matrix2<-function(n,m,V,byRow=T){
if(length(V) != n*m ) warning("length of the vector and rows*columns differs" )
# split the vector
if(byRow) r <- n
if(!byRow) r <- m
fl <- 1:r # how often you have to split
fg <- sort(rep_len(fl,length(V))) # create a "splitting-vector"
L <- split(V,fg)
# convert the list to a matrix
if(byRow) res <- do.call(rbind,L)
if(!byRow) res <- do.call(cbind,L)
rownames(res) <- colnames(res) <- NULL
res #output
}
matrix2(2,4,1:8,F)
[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8
matrix2(2,4,1:8,T)
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8

Build a square-ish matrix with a specified number of cells

I would like to write a function that transforms an integer, n, (specifying the number of cells in a matrix) into a square-ish matrix that contain the sequence 1:n. The goal is to make the matrix as "square" as possible.
This involves a couple of considerations:
How to maximize "square"-ness? I was thinking of a penalty equal to the difference in the dimensions of the matrix, e.g. penalty <- abs(dim(mat)[1]-dim(mat)[2]), such that penalty==0 when the matrix is square and is positive otherwise. Ideally this would then, e.g., for n==12 lead to a preference for a 3x4 rather than 2x6 matrix. But I'm not sure the best way to do this.
Account for odd-numbered values of n. Odd-numbered values of n do not necessarily produce an obvious choice of matrix (unless they have an integer square root, like n==9. I thought about simply adding 1 to n, and then handling as an even number and allowing for one blank cell, but I'm not sure if this is the best approach. I imagine it might be possible to obtain a more square matrix (by the definition in 1) by adding more than 1 to n.
Allow the function to trade-off squareness (as described in #1) and the number of blank cells (as described in #2), so the function should have some kind of parameter(s) to address this trade-off. For example, for n==11, a 3x4 matrix is pretty square but not as square as a 4x4, but the 4x4 would have many more blank cells than the 3x4.
The function needs to optionally produce wider or taller matrices, so that n==12 can produce either a 3x4 or a 4x3 matrix. But this would be easy to handle with a t() of the resulting matrix.
Here's some intended output:
> makemat(2)
[,1]
[1,] 1
[2,] 2
> makemat(3)
[,1] [,2]
[1,] 1 3
[2,] 2 4
> makemat(9)
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
> makemat(11)
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
Here's basically a really terrible start to this problem.
makemat <- function(n) {
n <- abs(as.integer(n))
d <- seq_len(n)
out <- d[n %% d == 0]
if(length(out)<2)
stop('n has fewer than two factors')
dim1a <- out[length(out)-1]
m <- matrix(1:n, ncol=dim1a)
m
}
As you'll see I haven't really been able to account for odd-numbered values of n (look at the output of makemat(7) or makemat(11) as described in #2, or enforce the "squareness" rule described in #1, or the trade-off between them as described in #3.
I think the logic you want is already in the utility function n2mfrow(), which as its name suggests is for creating input to the mfrow graphical parameter and takes an integer input and returns the number of panels in rows and columns to split the display into:
> n2mfrow(11)
[1] 4 3
It favours tall layouts over wide ones, but that is easily fixed via rev() on the output or t() on a matrix produced from the results of n2mfrow().
makemat <- function(n, wide = FALSE) {
if(isTRUE(all.equal(n, 3))) {
dims <- c(2,2)
} else {
dims <- n2mfrow(n)
}
if(wide)
dims <- rev(dims)
m <- matrix(seq_len(prod(dims)), nrow = dims[1], ncol = dims[2])
m
}
Notice I have to special-case n = 3 as we are abusing a function intended for another use and a 3x1 layout on a plot makes more sense than a 2x2 with an empty space.
In use we have:
> makemat(2)
[,1]
[1,] 1
[2,] 2
> makemat(3)
[,1] [,2]
[1,] 1 3
[2,] 2 4
> makemat(9)
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
> makemat(11)
[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
> makemat(11, wide = TRUE)
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
Edit:
The original function padded seq_len(n) with NA, but I realised the OP wanted to have a sequence from 1 to prod(nrows, ncols), which is what the version above does. The one below pads with NA.
makemat <- function(n, wide = FALSE) {
if(isTRUE(all.equal(n, 3))) {
dims <- c(2,2)
} else {
dims <- n2mfrow(n)
}
if(wide)
dims <- rev(dims)
s <- rep(NA, prod(dims))
ind <- seq_len(n)
s[ind] <- ind
m <- matrix(s, nrow = dims[1], ncol = dims[2])
m
}
I think this function implicitly satisfies your constraints. The parameter can range from 0 to Inf. The function always returns either a square matrix with sides of ceiling(sqrt(n)), or a (maybe) rectangular matrix with rows floor(sqrt(n)) and just enough columns to "fill it out". The parameter trades off the selection between the two: if it is less than 1, then the second, more rectangular matrices are preferred, and if greater than 1, the first, always square matrices are preferred. A param of 1 weights them equally.
makemat<-function(n,param=1,wide=TRUE){
if (n<1) stop('n must be positive')
s<-sqrt(n)
bottom<-n-(floor(s)^2)
top<-(ceiling(s)^2)-n
if((bottom*param)<top) {
rows<-floor(s)
cols<-rows + ceiling(bottom / rows)
} else {
cols<-rows<-ceiling(s)
}
if(!wide) {
hold<-rows
rows<-cols
cols<-hold
}
m<-seq.int(rows*cols)
dim(m)<-c(rows,cols)
m
}
Here is an example where the parameter is set to default, and equally trades off the distance equally:
lapply(c(2,3,9,11),makemat)
# [[1]]
# [,1] [,2]
# [1,] 1 2
#
# [[2]]
# [,1] [,2]
# [1,] 1 3
# [2,] 2 4
#
# [[3]]
# [,1] [,2] [,3]
# [1,] 1 4 7
# [2,] 2 5 8
# [3,] 3 6 9
#
# [[4]]
# [,1] [,2] [,3] [,4]
# [1,] 1 4 7 10
# [2,] 2 5 8 11
# [3,] 3 6 9 12
Here is an example of using the param with 11, to get a 4x4 matrix.
makemat(11,3)
# [,1] [,2] [,3] [,4]
# [1,] 1 5 9 13
# [2,] 2 6 10 14
# [3,] 3 7 11 15
# [4,] 4 8 12 16
What about something fairly simple and you can handle the exceptions and other requests in a wrapper?
library(taRifx)
neven <- 8
nodd <- 11
nsquareodd <- 9
nsquareeven <- 16
makemat <- function(n) {
s <- seq(n)
if( odd(n) ) {
s[ length(s)+1 ] <- NA
n <- n+1
}
sq <- sqrt( n )
dimx <- ceiling( sq )
dimy <- floor( sq )
if( dimx*dimy < length(s) ) dimy <- ceiling( sq )
l <- dimx*dimy
ldiff <- l - length(s)
stopifnot( ldiff >= 0 )
if( ldiff > 0 ) s[ seq( length(s) + 1, length(s) + ldiff ) ] <- NA
matrix( s, nrow = dimx, ncol = dimy )
}
> makemat(neven)
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 NA
> makemat(nodd)
[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 NA
> makemat(nsquareodd)
[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 NA
[3,] 3 7 NA
[4,] 4 8 NA
> makemat(nsquareeven)
[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16

Resources