Graphite how to summarize based on selected interval - graphite

How can I summarize graphite data depending on the selected interval? If the selected interval is up to 1 hour, the data counter should show data points for every minute. If the interval is up to 3 hours, the data should be summarized over 5 minutes. If the interval is up to 1 day, the data should be summarized over 15 minutes.
Is this possible?

You can get something close this this using by creating an interval template variable, enable the Auto option, and set number of steps. In the example below it's set to 40 steps so it will pick an appropriate interval based on the time range.
Use the variable like this:

AFAIK Graphite doesn't do this automatically.
However since Graphite has a public API you can script this yourself automatically to retrieve the graph with the correct summarizing period. Grafana for example does this when using the 'auto' option for interval template.
Pseudo-code:
if interval == '1h':
get_metric(summarize(metric, '1min', 'sum')
elif interval == '3h':
get_metric(summarize(metric, '5min', 'sum')
elif interval == '1d':
get_metric(summarize(metric, '15min', 'sum')

Related

Application Insights Analytics - Chart X axis

How can I render a chart for the query
performanceCounters
| where name == "% Processor Time"
| summarize avg(value) by bin(timestamp, 5s),cloud_RoleInstance
where i get a point for every 5 seconds and not every 1 min?
Perf counters are collected at a regular interval (about 1 min) the effect of the bin function will move the time stamp to the nearest 5 second interval. What you're seeing is because of the counter collection interval and you won't get that granularity. You would need to implement your own module to do that.
https://github.com/Microsoft/ApplicationInsights-dotnet-server/blob/v2.3.0/Src/PerformanceCollector/Shared/PerformanceCollectorModule.cs#L49

Calculating Idle time for Uber service

I have uber dataset containing variables pickup point, request time, drop time, date variable without month and year.
I need code for calculating idle time and creating a new variable idle time. Calculation as follows:
If pickup points are same for consecutive rows and date is different for consecutive rows then NA value if not difference between drop time of first row and the pickup time in second row. I have done it in excel and need to do it in R
Attached is the screenshot of data in excel
Try something like this, if this is what you are looking for
for(i in 2:nrow(df)){
df$idle[1]<-NA
if(df$Pickup.point[i]!=df$Pickup.point[i-1])
df$idle[i]<-NA
else
if(df$Date[i]!=df$Date[i-1])
df$idle[i]<-NA
else
df$idle[i]<-(df$Req[i]-df$Drop[i-1])
}

gnuplot, calculating and plotting monthly averages

I have a datafile with several months of minute data with lines like "2016-02-02 13:21(\t)value(\n)".
I need to plot the data (no problem with that) and calculate + plot an average for each month.
Is it possible in gnuplot?
I am able to get an overall average using
fit a "datafile" using 1:3 via a
I am also able to specify some time range for the fit using
fit [now_secs-3600*24*31:now_secs] b "datafile" using 1:3 via b
... and then plot them with
plot a t "Total average",b t "Last 31 days"
But no idea how to calculate and plot an average for each month (= one stepped line showing each month average)
Here is a way to do it purely in gnuplot. This method can be adapted (with a not small amount of effort) to work with files that cross a year boundary or span more than one year. It works just fine if the data starts with January or not. It computes the ordinary average for each month (the arithmetic mean) treating each data point as one value for the month. With somewhat significant modification, it can be used to work with weighted averages as well.
This makes a significant use of the stats function to compute values. It is a little long, partly because I commented it heavily. It uses 5.0 features (NaN for undefined values and in-memory datablocks instead of temporary files), but comments note how to change these for earlier versions.
Note: This script must be run before setting time mode. The stats function will not work in time mode. Time conversions are handled by the script functions.
data_time_format = "%Y-%m-%d %H:%M" #date format in file
date_cols = 2 # Number of columns consumed by date format
# get numeric month value of time - 1=January, 12=December
get_month(x) = 0+strftime("%m",strptime(data_time_format,x))
# get numeric year value of time
get_year(x) = 0+strftime("%Y",strptime(data_time_format,x))
# get internal time representation of day 1 of month x in year y
get_month_first(x,y) = strptime("%Y-%m-%d",sprintf("%d-%d-01",y,x))
# get internal time representation of date
get_date(x) = strptime(data_time_format,x)
# get date string in file format corresponding to day y in month x of year z
get_date_string(x,y,z) = strftime(data_time_format,strptime("%Y-%m-%d",sprintf("%04d-%02d-%02d",z,x,y)))
# determine if date represented by z is in month x of year y
check_valid(x,y,z) = (get_date(z)>=get_month_first(x,y))&(get_date(z)<get_month_first(x+1,y))
# Determine year and month range represented by file
year = 0
stats datafile u (year=get_year(strcol(1)),get_month(strcol(1))) nooutput
month_min = STATS_min
month_max = STATS_max
# list of average values for each month
aves = ""
# fill missing months at beginning of year with 0
do for[i=1:(month_min-1)] {
aves = sprintf("%s %d",aves,0)
}
# compute average of each month and store it at the end of aves
do for[i=month_min:month_max] {
# In versions prior to 5.0, replace NaN with 1/0
stats datafile u (check_valid(i,year,strcol(1))?column(date_cols+1):NaN) nooutput
aves = sprintf("%s %f",aves,STATS_mean)
}
# day on which to plot average
baseday = 15
# In version prior to 5.0, replace $k with a temporary file name
set print $k
# Change this to start at 1 if we want to fill in prior months
do for [i=month_min:month_max] {
print sprintf("%s %s",get_date_string(i,baseday,year),word(aves,i))
}
set print
This script will create either a in-memory datablock or a temporary file for earlier versions (with the noted changes) that contains a similar file to the original, but containing one entry per month with the value of the monthly average.
At the beginning we need to define our date format and the number of columns that the date format consumes. From then on it is assumed that the data file is structured as datetime value. Several functions are defined which make extensive use of the strptime function (to compute a date string to an internal integer) and the strftime function (to compute an internal representation to a string). Some of these functions compute both ways in order to extract the necessary values. Note the addition of 0 in the get_month and get_year function to convert a string value to an integer.
We do several steps with the data in order to build our resulting datablock/file.
Use the stats function to compute the first and last month and the year. We are assuming only one year is present. This step needs to be modified heavily if we need to work with more than one year. In particular months in a second year would need to be numbered 13 - 24 and in a third year 25 - 36 and so on. We would need to modify this line to capture multiple years as well. Probably two passes would be needed.
Build up a string which contains space separated values for the average value for each month. This is done by applying the stats function once for each month. The check_valid function checks if a value is in the month of interest, and a value that isn't is assigned NaN which causes the stats function to ignore it.
Loop over the months of interest and build a datablock/temporary file with one entry for each month with the average value for that month. In this case, the average value is assigned to the start of the 15th day of the month. This can be easily changed to any other desired time. The get_date_string function is used for assigning the value to a time.
Now to demonstrate this, suppose that we have the following data
2016-02-03 15:22 95
2016-02-20 18:03 23
2016-03-10 16:03 200
2016-03-15 03:02 100
2016-03-18 02:02 200
We wish to plot this data along with the average value for each month. We can run the above script, and we will get a datablock $k (make the commented change near the bottom to use a temporary file instead) containing the following
2016-02-15 00:00 59.000000
2016-03-15 00:00 166.666667
This is exactly the average values for each month. Now we can plot with
set xdata time
set timefmt data_time_format
set key outside top right
plot $k u 1:3 w points pt 7 t "Monthly Average",\
datafile u 1:3 with lines t "Original Data"
Here, just for illustration, I used points with the averages. Feel free to use any style that you want. If you choose to use steps, you will very likely want to adjust the day that is assigned† in the datablock/temporary file (probably the first or last day in the month depending on how you want to do it).
It is usually easier with a task like this to do some outside preprocessing, but this demonstrates that it is possible in pure gnuplot.
† Regarding changing the day that is assigned, using any specific day in the month is easy, as long as it is a day that occurs in every month (dates from the 1st to the 28th) - just change baseday. For other values modifications to the get_date_string function need to be made.
For example, to use the last day, the function can be defined as
get_date_string(x,y,z) = strftime(data_time_format,strptime("%Y-%m-%d",sprintf("%04d-%02d-01",z,x+1))-24*60*60)
This version actually computes the first day of the next month, and then subtracts one whole day from that. The second argument is ignored in this version, but preserved to allow it to be used without having to make any additional changes to the script.
With a recent version of gnuplot, you have the stats command and you can do something something like this:
stats "datafile" using 1:3 name m0
month_sec=3600*24*30.5
do for [month=1:12] {
stats [now_secs-(i+1)*month_sec:(i+0)*now_secs-month_sec] "datafile" using 1:3 name sprintf("m%d")
}
you get m0_mean value for the total mean and you get all m1_mean m2_mean variables for the previuos months etc... defined in gnuplot
Finally to plot the you should do something like:
plot 'datafile', for [month=0:12] value(sprintf("m%d_mean"))
see help stats help for help value help sprintf for more information on the above commands

Get total time and create an average based on timestamps

Background: I want to use coldfusion to find the total time a process takes by taking two timestamps and then adding all of the total times to create an average.
Question: What is the best way to take two timestamps and find out the difference in time by minutes.
Example:
Time Stamp #1: 2015-05-08 15:44:00.000
Time Stamp #2: 2015-05-11 08:52:00.000
So the time between the above timestamps would be:
2 Days 6 hours 52 mins = 3,292 minutes
I want to run this conversion on a handful of timestamp's and take the total minutes and divide to get an average.
To add more information to my question. 1. Yes the values are coming from a DB MSSQL. 2. I am actually going to be using the individual time differences and showing and overall average. So in my for loop each line will have a value like 3,292 (converted to mins or hours or days) and at the end of the for loop I want to show an average of all the lines shown on the page. Let me know if I need to add any other information.
Assuming your query is sorted properly, something like this should work.
totalMinutes = 0;
for (i = 2; i <= yourQuery.recordcount; i++)
totalMinutes +=
DateDiff('n'
, yourQuery.timestampField[i-1]
,yourQuery.timestampField[i]);
avgMinutes = totalMinutes / (yourQuery.recordcount -1);
Use the dateDiff() function
diffInMinutes = dateDiff('n', date1, date2);

Using R to subset overlapping daily sensor data

I have a data set (3.2 million rows) in R which consists of pairs of time (milliseconds) and volts. The sensor that gathers the data only runs during the day so the time is actually the milliseconds since start-up that day.
For example, if the sensor runs 12 hours per day, then the maximum possible time value for one day is 43,200,000 ms (12h * 60m * 60s * 1000ms).
The data is continually added to a single file, which means there are many overlapping time values:
X: [1,2,3,4,5,1,2,3,4,5,1,2,3,4,5...] // example if range was 1-5 for one day
Y: [voltage readings at each point in time...]
I would like to separate each "run" into unique data frames so that I could clearly see individual days. Currently when I plot the entire data set it is incredibly muddy because in fact all of the days are being shown in the single plot. Thanks for any help.
If your data.frame df has columns X and Y, you can use diff to find every time X goes down (meaning a new day, it sounds like):
df$Day = cumsum(c(1, diff(df$X) < 0))
Day1 = df[df$Day==1,]
plot(Day1$X, Day1$Y)

Resources