How many points define a cylinder? - math

It is known that 4 non-collinear, non-coplanar 3D points define a 3D sphere.
Is there an equivalent property/theorem for cylinder?

For cylinder you need 5 points. But I am not EXACTLY sure if 5 points uniquely defines a cylinder.
Following references justifies this:
http://library.wolfram.com/infocenter/Conferences/7521/cylinder_5_points_computation.pdf

A cylinder has 5 degrees of freedom: 4 for the axis (a line in 3D space), 1 for the radius, so in principle 5 points are required and enough.
But there can be several solutions: taking five point that form a regular bipyramid (two tetrahedra with a common base), there are 6 solutions, by symmetry.

This question is much more interesting than it looks like at a first look.
It is relatively easy to see how 5 points define a cylinder but not uniquely:
you can pick 3 of such points to define a circular cross section and let the other two define the bases. However it is not difficult to see that the choice of the three first points is not unique. It also depends on whether "define" means that the points have to lie on the surface (in which case the two last point have to lie inside the unbounded cylinder defined by the previous three) or not.
I think there is no simple elegant statement like in the case of the sphere.

For a finite cylinder you need a total of 7 parameters.
A 3D line needs 4 parameters (minimum distance from origin, and 3 for orientation). Then from the point closest to the origin you need 2 distances defining the beginning and end of the cylinder. One more parameter is needed for the radius, and voila, you have a 3D cylinder in space defined.
You can also use two 3D points plus a radius which also needs 7 parameters.
For in infinite cylinder you need 5 parameters. 4 for the line and 1 for the radius.

Sticking to the exact vocabulary of the question, you only need two points (really one point and a scalar for the radius) for a sphere.
A cylinder needs no more that 3 points. Two to define the axis and end points, plus a 3rd (really, 2 points and a scalar) to get the radius.

Related

how to find if a particular point exists between two concentric circles or not???i have 3 points given on each circle

i have two concentric circles and three points are given for each circle that are on circumference.
I need a optimized method to check if a given random point exist inbetween these circles or not.
You can compute (x²+y²), x, y, 1 for each point. The last entry is simply the constant one. Put these terms for four given points into a matrix and compute its determinant. The determinant will be zero if the points are cocircular. Otherwise the sign will tell you which point is on which side with respect to the circle defined by the other three. Use a simple example to check which sign corresponds to which direction. Be prepared for the fact that the three circle-defining points being oriented in a clockwise or counter-clockwise orientation will affect this sign, too.
Computing a 4×4 determinant can be done horribly inefficiently, too. I'd suggest you compute all the 2×2 minors from the first two rows, and all the 2×2 minors from the last two, then you can combine them to form the full determinant. See this Math SE post for details. If you need further mathematical help (as opposed to programming help), you might find more suitable answers there.
Nothe that the above works for each circle independently. Check whether the point is inside the one, then check whether it is outside the other. It does not make use of the fact that the circles are assumed to be cocircular.

How to test of 2 sets of planes (each defining a volume in 3d space) overlap?

To take a simple example, say there is 2 bounding boxes (not necessarily axis aligned), each defined by 6 planes.
Is there a good way to determine if the volumes defined by each set of planes overlap?
(Only true/false, no need for the intersecting volume).
A solution to this problem, if its general should be able to scale up to many sets of planes too.
So far the solutions I've come up with basically rely on converting each set of planes into geometry - (vertices & polygons), then performing the intersection as you would if you have to intersect any 2 regular meshes. However I was wondering if there was a more elegant method that doesn't rely on this.
The intersection volume (if any) is the set of all points on the right side of all planes (combined, from both volumes). So, if you can select 3 planes whose intersection is on the right side of all the remaining planes, then the two volumes have an intersection.
This is a linear programming problem. In your case, you only need to find if there is a feasible solution or not; there are standard techniques for doing this.
You can determine the vertices of one of your bodies by mutually intersecting all possible triples that its planes form, and then check whether each of the resulting vertices lies on the good side of the planes defining the second body. When each of the second body's planes is given as base vertex p and normal v, this involves checking whether (x-p).v>=0 .
Assume that your planes are each given as base vertices (p,q,r) and normals (u,v,w) respectively, where the normals form the columns of a matrix M, the intersection is x = inv(M).(p.u, q.v, r.w).
Depending on how regular your two bodies are (e.g. parallelepipeds), many of the dot products and matrix inverses can be precomputed and reused. Perhaps you can share some of your prerequisites.
Posting this answer since this is one possible solution (just from thinking about the problem).
first calculate a point on each plane set (using 3 planes), and simply check if either of these points is inside the other plane-set.This covers cases where one volume is completely inside another, but won't work for partially overlapping volumes of course.
The following method can check for partial intersections.
for one of the sets, calculate the ray defined by each plane-plane pair.
clip the each of these rays by the other planes in the set, (storing a minimum and maximum value per ray).
discard any rays that have a minimum value greater then their maximum.The resulting rays represent all 'edges' for the volume.
So far all these calculations have been done on a single set of planes, so this information can be calculated once and stored for re-use.
Now continue clipping the rays but this time use the other set of planes, (again, discarding rays with a min greater then the maximum).
If there are one or more rays remaining, then there is an intersection.
Note 0): This isn't going to be efficient for any number of planes, (too many On^2 checks going on). In that case converting to polygons and then using more typical geometry tree structures makes more sense.
Note 1): Discarding rays can be done as the plane-pairs are iterated over to avoid first having to store all possible edges, only to discard many.
Note 2): Before clipping all rays with the second set of planes, a quick check could be made by doing a point-inside test between the plane-sets (the point can be calculated using a ray and its min/max). This will work if one shape is inside another, however clipping the rays is still needed for a final result.

Find minimum set of rays intersecting all voxels

Okay first I wasn't sure if this was better suited to the MathSO so apologies if it needs migrating.
I have a 3D grid of points (representing the centers of voxels) with pitch varying in each dimension, but regular. For example resolution may be 100 by 50 by 40 for a cube shaped object.
Giving me nVox = 200,000.
For each voxel - I would like to cast (nVox - 1) rays, ending at the center, and originating from each of the other voxels.
Now there is obviously a lot of overlap here but I am having trouble finding how to calculate the minimum set of rays required. This sounds like a problem that has an elegant solution, I am however struggling to find it.
As a start, it is obvious that you only need to compute
[nVox * (nVox - 1)] / 2
of the rays, as the other half will simply be in the opposite directions. It is also easy in the 2D case to combine all of those parallel to one of the grid axes (and the two diagonals).
So how do I find the minimum set of rays I need, to pass from all voxel centers, to all others?
If someone could point me in the right direction that'd be great. Any and all help will be much appreciated.
Your problem really isn't about three dimensions in any specific way. All the conceptual complexity is present in the two dimensional case.
Instead of connecting points individually, think about the set of lines that pass through at least two points on your grid. Thus instead of thinking about points initially, think about directions. For 2-D these directions are slopes of lines. These slopes have to be rational numbers, since they intersect points on an integer lattice. Since you have a finite lattice, the numerator and the denominator of the slope can be bounded by the size of the figure. So your underlying problem is enumerating possible slopes for rational numbers of bounded "height" (math jargon).
There's an algorithm for that. It's the one used to generate the Farey sequence of reduced fractions. If your figure is N pixels wide, there will (in general) be a slope with denominator N in the somewhere, but there can't be a slope in reduced form with denominator >N; it wouldn't fit.
It's easier to deal with slopes between 0 and 1 directly. You get the other directions by two operations: negating the slope and by interchanging axes. For three dimensions, you need two slopes to define a direction.
Given an arbitrary direction (no necessarily a rational one as above), there's a perpendicular linear space of dimension k-1; for 3-D that's a plane. Projecting a 3-D parallelpiped onto this plane yields a hexagon in general; two vertices project onto the interior, six project to the vertices of the hexagon.
For a given discrete direction, there's a minimal bounding box on the integer lattice such that two opposite vertices lie along that direction. As long as that bounding box fits within your original grid, each of the interior points of the projection each correspond to a line that intersects your grid in at least two points.
In summary, enumerate directions, then for each direction enumerate where that direction intersects your grid in at least two points.

Sphere that surely encompass given list of points [points are with x, y and z co-ordinate]

I am trying to find sphere that surly encompasses given list of points.
Points will have x, y and z co-ordinate[Points are in 3D].
Actually I am trying to find new three points based on given list of points by some calculations like find MinX,MaxX ,MinY,MaxY,and MinZ and MaxZ and do some operation and find new three points
And I will draw sphere from these three points.
And I will also taking all these three points on the diameter of sphere so I have a unique sphere.
Is there any standard way for finding encompassing sphere of given list of points?
Yes, the standard algorithm is Welzl's algorithm (assuming you want the minimal sphere around your points). Particularly the improved version of Gaertner is very useful, robust and numerically stable! It handles all the degenerate cases well too.
At its core, the algorithm permutes the points (randomly) to find the 1-4 points that lie on the boundary of the sphere. It's basically a clever trial-and-error algorithm. From these points, you can find the center by finding a point that has the same distance to all those points. Gärtner's version uses an improved numerical device to find the center. Also, it employs an extra pivoting step that presumably makes the algorithm work better for a large number of input points.
If all you want is a sphere around three points, I suggest you still use Gärtners "device" to compute the circumsphere of the triangle. Otherwise, the method will probably degenerate easily (i.e. when the triangle is very flat).
Do you need 3 points, or any number of points?
If you only need the answer for 3 points, each pair of points defines a line segment. Take the longest line segment. Take a sphere centered at the middle of that line segment, whose radius is half the length of the line segment. There are two cases.
The third point is inside of that initial sphere. If so, then you have the smallest sphere.
The third point is outside of that initial sphere. Then the solution at Find Circum Center of Three point of Triangle [Not using Compass] will give you the center of the smallest sphere containing those 3 points.
If you need an arbitrary number of points, I'd do some sort of iterative approximation algorithm. Since you don't seem like you need that, I won't work out the details.

How to determine ordering of 3D vertices

If I have 5 Vertices in 3D coordinate space how can I determined the ordering of those Vertices. i.e clockwise or anticlockwise.
If I elaborate more on this,
I have a 3D model which consists of set of polygons. Each polygon is collection of vertices and I want to calculate the norm of the polygon surface. To calculate the norm I have to consider the vertices in counter clockwise order . My question is given set of vertices how can I determine whether it is ordered in clockwise or counter clockwise?
This is for navigation mesh generation where I want to remove the polygons which cannot be walked by the agent. To do so my approach is to calculate the surface norm(perpendicular vector of the polygon) and remove the polygon based on the angle with 2D plane. To calculate the norm I should know in which order points are arranged. So for given set of points in polygon how can I determine the order of the arrangement of points.
Ex.
polygon1 consist of Vertex1 = [-21.847065 -2.492895 19.569759], Vertex2 [-22.279873 1.588395 16.017160], Vertex3 [-17.234818 7.132950 7.453146] these 3 points and how can I determine the order of them
As others have noted, your question isn't entirely clear. Is the for something like a 3D backface culling test? If so, you need a point to determine the winding direction relative to. Viewed from one side of the polygon the vertices will appear to wind clockwise. From the other side they'll appear to wind counter clockwise.
But suppose your polygon is convex and properly planar. Take any three consecutive vertices A, B, and C. Then you can find the surface normal vector using the cross product:
N = (B - A) x (C - A)
Taking the dot product of the normal with a vector from the given view point, V, to one of the vertices will give you a value whose sign indicates which way the vertices appear to wind when viewed from V:
w = N . (A - V)
Whether this is positive for clockwise and negative for anticlockwise or the opposite will depend on the handedness of your coordinate system.
Your question is too poorly defined to give a complete answer, but here's the skeleton of one.
The missing part (the meat if you will), is a function that takes any two coordinates and tells you which one is 'greater' than the other. Without a solid definition for this, you won't be able to make anything work.
The rest, the skeleton, is pretty simple. Sort your list of vectors using your comparison function. For five vectors, a simple bubble sort will be all you need, although if the number of vertices increases considerably you may want to look into a faster sorting algorithm (ie. Quicksort).
If your chosen language / libraries provide sorting for you, you've already got your skeleton.
EDIT
After re-reading your question, it also occurred to me that since these n vertices define a polygon, you can probably make the assumption that all of them lie on the same plane (if they don't, then good luck rendering that).
So, if you can map the vector coordinates to 2d positions on that plane, you can reduce your problem to ordering them clockwise or counterclockwise in a two dimensional space.
I think your confusion comes from the fact that methods for computing cross products are sometimes taught in terms of clockwiseness, with a check of the clockwiseness of 3 points A,B,C determining the sign of:
(B-A) X (C - A)
However a better definition actually determines this for you.
In general 5 arbitrary points in 3 dimensions can't be said to have a clockwise ordering but 3 can since 3 points always lie in a plane.

Resources