Efficient and fast way of solving linear programming problems in R - r

I am working with a very large dataset, typically dealing with a few millions of combinations.
I want to solve the assignment problem.(maximise the sum)
I had tried solving it on a small test set using adagio::assignment, clue::solve_LSAP
I wasnt able to successfully install the "lpSolve" package on my system, threw some segmentation fault
Wanted to know which of these is faster or any other method which does it faster.
Thanks....

An LP formulation is not a good way to solve the assignment problem, whichever library you use. You have to use the Hungarian algorithm, and it looks like solve_LSAP does exactly that.
No need to try anything else IMHO.
EDIT: An efficient implementation of the Hungarian method should be O(n^3), which is extremely fast for any optimization algorithm. If solve_LSAP is not fast enough for your problem (assumed it is implemented correctly), it is very unlikely that any exact method will work.
You will have to use some sort of heuristic to approximate the solution.

Related

R numerical method similar to Vpasolve in Matlab

I am trying to solve a numerical equation in R but would want a method which perform similar to vpasolve in Matlab. I have a non linear equation (involving lot of log functions) which when solve in R with uniroot gives me complete different answer compared to what vpasolve gives in matlab.
First, a word of caution: it's often much more productive to learn that there's a better way to do something than the way you are used to doing.
edit
I went back to MATLAB and realized that the "vpa" collection is using extended precision. Is that absolutely necessary for your purposes? If not, then my suggestions below may suffice.
If you do require extended precision, then perhaps Rmpfr::unirootR function will suffice. I would like to point out that, since all these solvers are generating an approximate solution (as opposed to analytic), the use of extended precision operations seems a bit pointless.
Next, you need to determine whether MATLAB::vpasolve or uniroot is getting you the correct answer. Or maybe you simply are converging to a root that's not the one you want, in which case you need to read up on setting limits on the starting conditions or the search region.
Finally, in addition to uniroot, I recommend you learn to use the R packages BBsolve , nleqslv, rootsolve, and ktsolve (disclaimer: I am the owner and maintainer of ktsolve). These packages are pretty flexible and may lead you to better solutions to your original problem.

Multiobjective Constrained Combinatorial Optimization in R

This is quite a general question, but I have not been able to find a solution so far.
I am trying to solve a problem of combinatorial optimization in which I have several objective functions to optimize, as well as several constraints to impose. I am thus trying to find some software (an R package preferably) that can solve this problem.
I have explored several options, but none of them seems to be useful for my purpose: lpSolveAPI is aimed for linear programming only, which is not the case; mco can minimize a multidimensional objective function, but does not seem to be able to manage binary (i.e. decision) variables, needed for combinatorial problems; adagio and CEGO can deal with combinatorial optimization problems, but as far as I can see they can only optimize a single unidimensional function.
Is there any other package I am not aware of that can handle this type of problem? Or any of the aforementioned may be useful, though I may be missing the way to the functionality I need?
Thank you so much in advance with this. It is being really a nightmare trying to find this out.

Parallel arithmetic on large integers

Are there any software tools for performing arithmetic on very large numbers in parallel? What I mean by parallel is that I want to use all available cores on my computer for this.
The constraints are wide open for me. I don't mind trying any language or tech.
Please and thanks.
It seems like you are either dividing really huge numbers, or are using a suboptimal algorithm. Parallelizing things to a fixed number of cores will only tweak the constants, but have no effect on the asymptotic behavior of your operation. And if you're talking about hours for a single division, asymptotic behavior is what matters most. So I suggest you first make sure sure your asymptotic complexity is as good as can be, and then start looking for ways to improve the constants, perhaps by parallelizing.
Wikipedia suggests Barrett division, and GMP has a variant of that. I'm not sure whether what you've tried so far is on a similar level, but unless you are sure that it is, I'd give GMP a try.
See also Parallel Modular Multiplication on Multi-core Processors for recent research. Haven't read into that myself, though.
The only effort I am aware of is a CUDA library called CUMP. However, the library only provides support for addition, subtraction and multiplication. Anyway, you can use multiplication to perform the division on the GPU and check if the quality of the result is enough for your particular problem.

using GPU in optimization in R (OpenCL)?

based on an idea from another thread, I was hoping you could help me out with this idea / push me in the right direction.
I have seen an example of OpenCL, which didn't look too complicated for basic calculations, so I hope to just rewrite the function for numerical gradient the optimization routine uses in the OpenCL language, and squeeze it in the optimizer function, so everytime I would optimize some function, it would do the independent calculations in the GPU.
Idea: Use gpu for calculation of functionals and gradients during the optimizations (e.g. nlminb()
Problems:
1, How to tap the optimization routine? (I can't seem to locate the C file of which does the optimisation)
2,Can I just replace the gradient calculation with what I prepare for GPU?
3,Does anyone got something similar to work? Any ideas, notes?
Thank you and have a nice day!
PS: If you think it wouldn't speed up the optim, it's hard to code / hard to do, etc. please let me know! I'm very inexperienced and lousy "programmer".
You could compile R linked to one of the OpenCL optimized BLAS libraries. But based on the attempts to speed up R with other BLAS libraries the results might be limited to special cases. Yours may be one of them though.

Lua alternative to optim()

I'm currently looking for a lua alternative to the R programming languages; optim() function, if anyone knows how to deal with this?
http://numlua.luaforge.net/ looks interesting but doesn't seem to have minimization. The most promising lead seems to be a Lua wrapper for GSL, which has a variety of multidimensional minimization algorithms included.
With derivatives
- BFGS (method="BFGS" in optim) and two conjugate gradient methods (Fletcher-Reeves and Polak-Ribiere) which are two of the three options available for method="CG" in optim.
Without derivatives
- the Nelder-Mead simplex (method="Nelder-Mead", the default in optim).
More specifically, see here for the Lua shell documentation covering minimization.
I agree with #Zack that you should try to use existing implementations if at all possible, and that you might need a little bit more background knowledge to know which algorithms will be useful for your particular problems ...
R's implementation of optim isn't actually written in R. If you type "optim" with no parentheses at the prompt, it'll dump out the definition of the function, and you can see that after some error checking and argument shuffling it invokes an .Internal routine (coded in C and/or Fortran) to do all the real work.
So your best bet is to find a C library for mathematical optimization -- sorry, I have no recommendations -- and wrap that into Lua. I doubt anyone has written native-Lua code for this, and I would not recommend trying to code it yourself; doing mathematical optimization efficiently is still an active domain of basic research, and the best-so-far algorithms are decidedly nontrivial to implement.

Resources