What's the difference between distributed hashtable technology and the bitcoin blockchain? - hashtable

This question could go into a bitcoin forum but I am trying to understand from a programming point of view.
There are technologies used for distributed storage, like distributed hashtables (say kademlia or similar). How is the bitcoin blockchain different from distributed hashtables? Or is maybe distributed hashtable technology underpinning the bitcoin blockchain? Or why is the bitcoin blockchain hailed as such a breakthrough compared to DHT?

Distributed Hash Table
A DHT is simply a key-value store distributed accross a number of
nodes in a network. The keys are distributed among nodes with a
deterministic algorithm. Each node is responsible for a portion of
the hash table.
A routing algorithm allows to perform requests in the hash table
without knowing every node of the network.
For exemple in the Chord
DHT —which is relatively simple DHT implementation— each
node is assigned an identifier and is responsible of keys which
are closer to its identifier.
Imagine there is 4 nodes that have identifiers: 2a6c, 7811, a20f, e9c3
The data with the identifier 2c92 will be stored on the node 2a6c.
Imagine now that you only know the node 7811 and you are looking
for the data with the identifier eabc.
You ask the node 7811 for the data eabc. 7811 doesn't have it so
it ask the node e9c3 wich send it to node 7811 which send it back
to you.
A clever algorithm allows to find data in O(log(N))
jumps. Without storing the entire routing table of the
network (the addresses of each nodes). Basically you ask the
closest node to the data identifier you know wich itself asks the
closest node it knows and so on reducing the size of the jump at
each step.
A DHT is very scalable because the data are uniformly distributed
among nodes and lookup time generally grows in O(log(N)).
Blockchain
A blockchain is also a distributed data structure but its purpose
is completely different.
Think of it as a history, or a ledger. The purpose is to store a
continuously-growing list of record without the possibility of
tampering and revision.
It is mainly used in the bitcoin currency system for keeping
track of transactions. Its property of being tamper-proof let everybody
know the exact balance of an account by knowing its history of
transaction.
In a blockchain, each node of the network stores the full data.
So it is absolutely not the same idea as the DHT in which data
are divided among nodes. Every new entry in the blockchain must
be validated by a process called mining whose details are out of the scope of this answer but this process insure consensus of the
data.
The two structures are both distributed data structure but serve
different purposes. DHT aims to provide an efficient (in term of
lookup time and storage footprint) structure to divide data on a
network and blockchain aims to provide a tamper-proof data
structure.

In computing, a hash table (hash map) is a data structure which implements an associative array abstract data type, a structure that can map keys to values. A hash table uses a hash function to compute an index into an array of buckets or slots, from which the desired value can be found.
but block chain is
a digital ledger in which transactions made in bitcoin or another cryptocurrency are recorded chronologically and publicly.

Related

May two DynamoDB scan segments contain the same hash key?

I'm scanning a huge table (> 1B docs) so I'm using a parallel scan (using one segment per worker).
The table has a hash key and a sort key.
Intuitively a segment should contain a set of hash keys (including all their sort keys), so one hash key shouldn't appear in more than one segment, but I haven't found any documentation indicating this.
Does anyone know how does DynamoDB behave in this scenario?
Thanks
This is an interesting question. I thought it would be easy to find a document stating that each segment contains a disjoint range of hash keys, and the same hash key cannot appear in more than one segment - but I too failed to find any such document. I am curious if anyone else can find such a document. In the meantime, I can try to offer additional intuitions on why your conjecture is likely correct - but also might be wrong:
My first intuition would be that you are right:
DynamoDB uses the hash key, also known as a partition key to decide on which of the many storage nodes to store copy of this data. All of the items sharing the same partition key (with different sort key values) are stored together, in sort-key order, so they can be Queryed together in order. DynamoDB uses a hash function on the partition key to decide the placement of each item (hence the name "hash key").
Now, if DynamoDB needs to divide the task of scanning all the data into "segments", the most sensible thing for it to do is to divide the space of hash values (i.e., hash function of the hash keys) to different equal-sized pieces. This division is easy to do (just a numeric division by TotalSegments), it ensures roughly the same amount of items in each segment (assuming there are many different partitions), and it ensures that the scanning of each segment involves a different storage node, so the parallel scan can proceed faster than what a single storage node is capable of.
However, there is one indication that this might not be the entire story.
The DynamoDB documentation claims that
In general, there is no practical limit on the number of distinct sort key values per partition key value.
This means that in theory at least, your entire database, perhaps one petabyte of it, may be in a single partition with billions of different sort keys. Since Amazon's single storage node do have a size limit, it means DynamoDB must (unless the above statement is false) support splitting of a single huge partition into multiple storage nodes. This means that when GetItem is looking for a particular item, DynamoDB needs to know which sort key is on which storage node. It also means that a parallel scan might - possibly - divide this huge partition into pieces, all scanning the same partition but different sort-key ranges in it. I am not sure we can completely rule out this possibility. I am guessing it will never happen when you only have smallish partitions.
Every DynamoDB table has a "hashspace" and data is partitioned as per the hash value of the partition key. When a ParallelScan is intended and the TotalSegments and Segment values are provided, the table's complete hashspace is logically divided into these "Segments" such that TotalSegments cover the complete hash space, without overlapping. It is quite possible some segments here do not actually have any data corresponding to them, since there may not be any data in the hashspace allocated to the segment. This can be observed if the TotalSegments value chosen is very high for instance.
And for each Segment value passed in the Scan request (with TotalSegments value being constant), each Segment would return distinct items without any overlap.
FAQs
Q. Ideal Number for TotalSegments ?
-> You might need to experiment with values, find the sweet spot for your table, and the number of workers you use, until your application achieves its best performance.
Q. One or more segments do not return any records. Why?
-> This is possible if the hash range that is allocated as per the TotalSegments value does not have any items. In this case, the TotalSegments value can be decreased, for better performance.
Q. Scan for a segment failed midway. Can a Scan for that segment alone be retried now ?
-> As long as the TotalSegments value remains the same, a Scan for one of the segments can be re-run, since it would have the same hash range allocated at any given time.
Q. Can I perform a Scan for a single segment, without performing the Scan for other segments as per TotalSegments value?
-> Yes. Multiple Scan operations for different Segments are not linked/do not depend on previous/other Segment Scans.

Using chord to implement a torrent network

From my understanding, in order to implement a torrent network, you have maintain a map from hash value of the file to the list of peers available in the network.
However, I think there are a few problems with this.
the list will be changed constantly for it will be updated when a nodes joins or leaves.
the list might become very long? but there can only be one version of the list in the dht network(for it's a hash table)
You have maintain a map from hash value of the file to the list of peers available in the network.
That is correct and it's the purpose of the DHT. The DHT will keep information on who is on the network and who has a certain information.
The list will be changed constantly for it will be updated when a nodes joins or leaves.
This is also correct but bit torrent DHTs are built with this in mind, with protocols for joining and removing offline peers.
the list might become very long? but there can only be one version of the list in the dht network(for it's a hash table)
That's the thing with DHT, it's distributed so you don't need to keep the entire DHT in one place. You only need a find the information you're looking for across the network.
To join a network you'll need a way to find some peers and to request the DHT. Usually this is done with bootstrap nodes. Once you've contacted a node you will be able to share information you have and discover other nodes and get information they have.
Each DHT has its own algorithms, you can find some details for the Chord DHT here.

Options to achieve consensus in an immutable distributed hash table

I'm implementing a completely decentralized database. Anyone at any moment can upload any type of data to it. One good solution that fits on this problem is an immutable distributed hash table. Values are keyed with their hash. Immutability ensures this map remains always valid, simplifies data integrity checking, and avoids synchronization.
To provide some data retrieval facilities a tag-based classification will be implemented. Any key (associated with a single unique value) can be tagged with arbitrary tag (an arbitrary sequence of bytes). To keep things simple I want to use same distributed hash table to store this tag-hash index.
To implement this database I need some way to maintain a decentralized consensus of what is the actual and valid tag-hash index. Immutability forces me to use some kind of linked data structure. How can I find the root? How to synchronize entry additions? How to make sure there is a single shared root for everybody?
In a distributed hash table you can have the nodes structured in a ring, where each node in the ring knows about at least one other node in the ring (to keep it connected). To make the ring more fault-tolerant make sure that each node has knowledge about more than one other node in the ring, so that it is able to still connect if some node crashes. In DHT terminology, this is called a "sucessor list". When the nodes are structured in the ring with unique IDs and some stabilization-protocol, you can do key lookups by routing through the ring to find the node responsible for a certain key.
How to synchronize entry additions?
If you don't want replication, a weak version of decentralized consensus is enough and that is that each node has its unique ID and that they know about the ring structure, this can be achieved by a periodic stabilization protocol, like in Chord: http://nms.lcs.mit.edu/papers/chord.pdf
The stabilization protocol has each node communicating with its successor periodically to see if it is the true successor in the ring or if a new node has joined in-between in the ring or the sucessor has crashed and the ring must be updated. Since no replication is used, to do consistent insertions it is enough that the ring is stable so that peers can route the insertion to the correct node that inserts it in its storage. Each item is only held by a single node in a DHT without replication.
This stabilization procedure can give you very good probability that the ring will always be stable and that you minimize inconsistency, but it cannot guarantee strong consistency, there might be gaps where the ring is temporary unstable when nodes joins or leaves. During the inconsistency periods, data loss, duplication, overwrites etc could happen.
If your application requires strong consistency, DHT is not the best architecture, it will be very complex to implement that kind of consistency in a DHT. First of all you'll need replication and you'll also need to add a lot of ACK and synchronity in the stabilization protocol, for instance using a 2PC protocol or paxos protocol for each insertion to ensure that each replica got the new value.
How can I find the root?
How to make sure there is a single shared root for everybody?
Typically DHTs are associated with some lookup-service (centralized) that contains IPs/IDs of nodes and new nodes registers at the service. This service can then also ensure that each new node gets a unique ID. Since this service only manages IDs and simple lookups it is not under any high load or risk of crashing so it is "OK" to have it centralized without hurting fault-tolerance, but of course you could distribute the lookup service as well, and sycnhronizing them with a consensus protocol like Paxos.

Who can explain the 'Replication' in dynamo paper?

In dynamo paper : http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
The Replication section said:
To account for node failures, preference list contains more than N
nodes.
I want to know why ? and does this 'node' mean virtual node ?
It is for increasing Dynamo availability. If the top N nodes in the preference list are good, the other nodes will not be used. But if all the N nodes are unavailable, the other nodes will be used. For write operation, this is called hinted handoff.
The diagram makes sense both for physical nodes and virtual nodes.
I also don't understand the part you're talking about.
Background:
My understanding of the paper is that, since Dynamo's default replication factor is 3, each node N is responsible for circle ranging from N-3 to N (while also being the coordinator to ring range N-1 to N).
That explains why:
node B holds keys from F to B
node C holds keys from G to C
node D holds keys from A to D
And since range A-B falls within all those ranges, nodes B, C and D are the ones that have that range of key hashes.
The paper states:
The section 4.3 Replication:
To address this, the preference list for a key is constructed by skipping positions in the ring to ensure that the list contains only distinct physical nodes.
How can preference list contain more than N nodes if it is constructed by skipping virtual ones?
IMHO they should have stated something like this:
To account for node failures, ring range N-3 to N may contain more than N nodes, N physical nodes plus x virtual nodes.
Distributed DBMS Dyanmo DB falls in that class which sacrifices Consistency. Refer to the image below:
So, the system is inconsistent even though it is highly available. Because network partitions are a given in Distributed Systems you cannot not pick Partition Tolerance.
Addressing your questions:
To account for node failures, preference list contains more than N nodes. I want to know why?
One fact of Large Scale Distributed Systems is that in a system of thousands of nodes, failure of a nodes is a norm.
You are bound to have a few nodes failing in such a big system. You don't treat it as an exceptional condition. You prepare for such situations. How do you prepare?
For Data: You simply replicate your data on multiple nodes.
For Execution: You perform the same execution on multiple nodes. This is called speculative execution. As soon as you get the first result from the multiple executions you ran, you cancel the other executions.
That's the answer right there - you replicate your data to prepare for the case when node(s) may fail.
To account for node failures, preference list contains more than N nodes. Does this 'node' mean virtual node?
I wanted to ensure that I always have access to my house. So I copied my house's keys and gave them to another family member of mine. This guy put those keys in a safe in our house. Now when we all go out, I'm under the illusion that we have other set of keys so in case I lose mine, we can still get in the house. But... those keys are in the house itself. Losing my keys simply means I lose the access to my house. This is what would happen if we replicate the data on virtual nodes instead of physical nodes.
A virtual node is not a separate physical node and so when the real node on which this virtual node has been mapped to will fail, the virtual node will go away as well.
This 'node' cannot mean virtual node if the aim is high availability, which is the aim in Dynamo DB.

A peer-to-peer and privacy-aware data mining/aggregation algorithm: is it possible?

Suppose I have a network of N nodes, each with a unique identity (e.g. public key) communicating with a central-server-less protocol (e.g. DHT, Kad). Each node stores a variable V. With reference to e-voting as an easy example, that variable could be the name of a candidate.
Now I want to execute an "aggregation" function on all V variables available in the network. With reference to e-voting example, I want to count votes.
My question is completely theoretical (I have to prove a statement, details at the end of the question), so please don't focus on the e-voting and all of its security aspects. Do I have to say it again? Don't answer me that "a node may have any number identities by generating more keys", "IPs can be traced back" etc. because that's another matter.
Let's see the distributed aggregation only from the privacy point of view.
THE question
Is it possible, in a general case, for a node to compute a function of variables stored at other nodes without getting their value associated to the node's identity? Did researchers design such a privacy-aware distributed algorithm?
I'm only dealing with privacy aspects, not general security!
Current thoughts
My current answer is no, so I say that a central server, obtaining all Vs and processes them without storing, is necessary and there are more legal than technical means to assure that no individual node's data is either stored or retransmitted by the central server. I'm asking to prove that my previous statement is false :)
In the e-voting example, I think it's impossible to count how many people voted for Alice and Bob without asking all the nodes, one by one "Hey, who do you vote for?"
Real case
I'm doing research in the Personal Data Store field. Suppose you store your call log in the PDS and somebody wants to find statistical values about the phone calls (i.e. mean duration, number of calls per day, variance, st-dev) without being revealed neither aggregated nor punctual data about an individual (that is, nobody must know neither whom do I call, nor my own mean call duration).
If a trusted broker exists, and everybody trusts it, that node can expose a double getMeanCallDuration() API that first invokes CallRecord[] getCalls() on every PDS in the network and then operates statistics on all rows. Without the central trusted broker, each PDS exposing double getMyMeanCallDuration() isn't statistically usable (the mean of the means shouldn't be the mean of all...) and most importantly reveals the identity of the single user.
Yes, it is possible. There is work that actually answers your question solving the problem, given some assumptions. Check the following paper: Privacy, efficiency & fault tolerance in aggregate computations on massive star networks.
You can do some computation (for example summing) of a group of nodes at another node without having the participants nodes to reveal any data between themselves and not even the node that is computing. After the computation, everyone learns the result (but no one learns any individual data besides their own which they knew already anyways). The paper describes the protocol and proves its security (and the protocol itself gives you the privacy level I just described).
As for protecting the identity of the nodes to unlink their value from their identity, that would be another problem. You could use anonymous credentials (check this: https://idemix.wordpress.com/2009/08/18/quick-intro-to-credentials/) or something alike to show that you are who you are without revealing your identity (in a distributed scenario).
The catch of this protocol is that you need a semi-trusted node to do the computation. A fully distributed protocol (for example, in a P2P network scenario) is not that easy though. Not because of a lack of a storage (you can have a DHT, for example) but rather you need to replace that trusted or semi-trusted node by the network, and that is when you find your issues, who does it? Why that one and not another one? And what if there is a collusion? Etc...
How about when each node publishes two sets of data x and y, such that
x - y = v
Assuming that I can emit x and y independently, you can correctly compute the overall mean and sum, while every single message is largely worthless.
So for the voting example and candidates X, Y, Z, I might have one identity publishing the vote
+2 -1 +3
and my second identity publishes the vote:
-2 +2 -3
But of course you cannot verify that I didn't vote multiple times anymore.

Resources