Determine center point of an offset arc - math

I am working on an algorithm which requires the coordinates for the center point of an offset arc. Dimensions available to find this are shown in the image below and the dimension required is labeled as X:
The point at the very left of the arc is a quadrant therefore, the arc center also 2.27 away from the line with a dimension of 3. The actual value of x in this example is 2.47 (rounded), this was found using CAD however, I am trying to find an mathematical relation for this.
Also, please note that dimensions shown are just what are available and not necessarily what are needed to find the center point.

I consider that top arc end is vertical (adjoint with straight line).
Let's denote segments
2.27 = B
4.5-3=1.5 = A
x = R = A + t //arc radius
R^2 = B^2 + t^2 //Pythagor's rule
(A + t)^2 = B^2 + t^2
t = (B^2 - A^2)/ (2*A)
t = 0.967 here
x = R = A + t = 1.5 + 0.967 = 2.467
end formula:
x = A + (B^2 - A^2)/ (2*A) = (A^2 + B^2)/ (2*A)

Related

Position of a point in a circle

Hello again first part is working like a charm, thank you everyone.
But I've another question...
As I've no interface, is there a way to do the same thing with out not knowing the radius of the circle?
Should have refresh the page CodeMonkey solution is exactly what I was looking for...
Thank you again.
============================
First I'm not a developer, I'm a simple woodworker that left school far too early...
I'm trying to make one of my tool to work with an autonomous robot.
I made them communicate by reading a lot of tutorials.
But I have one problem I cant figure out.
Robot expect position of the tool as (X,Y) but tool's output is (A,B,C)
A is the distance from tool to north
B distance to east
C distance at 120 degree clockwise from east axe
the border is a circle, radius may change, and may or may not be something I know.
I've been on that for 1 month, and I can't find a way to transform those value into the position.
I made a test with 3 nails on a circle I draw on wood, and if I have the distance there is only one position possible, so I guess its possible.
But how?
Also, if someone as an answer I'd love pseudo code not code so I can practice.
If there is a tool to make a drawing I can use to make it clearer can you point it out to me?
Thank you.
hope it helps :
X, Y are coordinate from center, Da,Db, Dc are known.
Trying to make it more clear (sorry its so clear in my head).
X,Y are the coordinate of the point where is the tool (P).
Center is at 0,0
A is the point where vertical line cut the circle from P, with Da distance P to A;
B is the point where horizontal line cuts the circle fom P, with Db distance P to B.
C is the point where the line at 120 clockwise from horizontal cuts the circle from P, with Dc distance P to C.
Output from tool is an array of int (unit mm): A=123, B=114, C=89
Those are the only informations I have
thanks for all the ideas I'll try them at home later,
Hope it works :)
Basic geometry. I decided to give up having the circle at the origin. We don't know the center of the circle yet. What you do have, is three points on that circle. Let's try having the tool's position, given as P, as the new (0,0). This thus resolves to finding a circle given three points: (0, Da); (Db,0), and back off at 120° at Dc distance.
Pseudocode:
Calculate a line from A to B: we'll call it AB. Find AB's halfway point. Calculate a line perpendicular to AB, through that midpoint (e.g. the cross product of AB and a unit Z axis finds the perpendicular vector).
Calculate a line from B to C (or C to A works just as well): we'll call it BC. Find BC's halfway point. Calculate a line perpendicular to BC, through that midpoint.
Calculate where these two lines cross. This will be the origin of your circle.
Since P is at (0,0), the negative of your circle's origin will be your tool's coordinates relative to the circle's origin. You should be able to calculate anything you need relative to that, now.
Midpoint between two points: X=(X1+X2)/2. Y=(Y1+Y2)/2.
The circle's radius can be calculated using, e.g. point A and the circle's origin: R=sqrt(sqr((Ax-CirX)+sqr(Ay-CirY))
Distance from the edge: circle's radius - tool's distance from the circle's center via Pythagorean Theorem again.
Assume you know X and Y. R is the radius of the circle.
|(X, Y + Da)| = R
|(X + Db, Y)| = R
|(X - cos(pi/3) * Dc, Y - cos(pi/6) * Dc)| = R
Assuming we don't know the radius R. We can still say
|(X, Y + Da)|^2 = |(X + Db, Y)|^2
=> X^2 + (Y+Da)^2 = (X+Db)^2 + Y^2
=> 2YDa + Da^2 = 2XDb + Db^2 (I)
and denoting cos(pi/3)*Dc as c1 and cos(pi/6)*Dc as c2:
|(X, Y + Da)|^2 = |(X - c1, Y - c2)|^2
=> X^2 + Y^2 + 2YDa + Da^2 = X^2 - 2Xc1 + c1^2 + Y^2 - 2Yc2 + c2^2
=> 2YDa + Da^2 = - 2Xc1 + c1^2 - 2Yc2 + c2^2
=> Y = (-2Xc1 + c1^2 + c2^2 - Da^2) / 2(c2+Da) (II)
Putting (II) back in the equation (I) we get:
=> (-2Xc1 + c1^2 + c2^2 - Da^2) Da / (c2+Da) + Da^2 = 2XDb + Db^2
=> (-2Xc1 + c1^2 + c2^2 - Da^2) Da + Da^2 * (c2+Da) = 2XDb(c2+Da) + Db^2 * (c2+Da)
=> (-2Xc1 + c1^2 + c2^2) Da + Da^2 * c2 = 2XDb(c2+Da) + Db^2 * (c2+Da)
=> X = ((c1^2 + c2^2) Da + Da^2 * c2 - Db^2 * (c2+Da)) / (2Dbc2 + 2Db*Da + 2Dac1) (III)
Knowing X you can get Y by calculating (II).
You can also make some simplifications, e.g. c1^2 + c2^2 = Dc^2
Putting this into Python (almost Pseudocode):
import math
def GetXYR(Da, Db, Dc):
c1 = math.cos(math.pi/3) * Dc
c2 = math.cos(math.pi/6) * Dc
X = ((c1**2 + c2**2) * Da + Da**2 * c2 - Db * Db * (c2 + Da)) / (2 * Db * c2 + 2 * Db * Da + 2 * Da * c1)
Y = (-2*X*c1 + c1**2 + c2**2 - Da**2) / (2*(c2+Da))
R = math.sqrt(X**2 + (Y+Da)**2)
R2 = math.sqrt(Y**2 + (X+Db)**2)
R3 = math.sqrt((X - math.cos(math.pi/3) * Dc)**2 + (Y - math.cos(math.pi/6) * Dc)**2)
return (X, Y, R, R2, R3)
(X, Y, R, R2, R3) = GetXYR(123.0, 114.0, 89.0)
print((X, Y, R, R2, R3))
I get the result (X, Y, R, R2, R3) = (-8.129166703588021, -16.205081335032794, 107.1038654949096, 107.10386549490958, 107.1038654949096)
Which seems reasonable if both Da and Db are longer than Dc, then both coordinates are probably negative.
I calculated the Radius from three equations to cross check whether my calculation makes sense. It seems to fulfill all three equations we set up in the beginning.
Your problem is know a "circumscribed circle". You have a triangle define by 3 distances at given angles from your robot position, then you can construct the circumscribed circle from these three points (see Circumscribed circle from Wikipedia - section "Other properties"). So you know the diameter (if needed).
It is also known that the meeting point of perpendicular bisector of triangle sides is the center of the circumscribed circle.
Let's a=Da, b=Db. The we can write a system for points A and B at the circumference:
(x+b)^2 + y^2 = r^2
(y+a)^2 + x^2 = r^2
After transformations we have quadratic equation
y^2 * (4*b^2+4*a^2) + y * (4*a^3+4*a*b^2) + b^4-4*b^2*r^2+a^4+2*a^2*b^2 = 0
or
AA * y^2 + BB * y + CC = 0
where coefficients are
AA = (4*b^2+4*a^2)
BB = (4*a^3+4*a*b^2)
CC = b^4-4*b^2*r^2+a^4+2*a^2*b^2
So calculate AA, BB, CC coefficients, find solutions y1,y2 of quadratic eqiation, then get corresponding x1, x2 values using
x = (a^2 - b^2 + 2 * a * y) / (2 * b)
and choose real solution pair (where coordinate is inside the circle)
Quick checking:
a=1,b=1,r=1 gives coordinates 0,0, as expected (and false 1,-1 outside the circle)
a=3,b=4,r=5 gives coordinates (rough) 0.65, 1.96 at the picture, distances are about 3 and 4.
Delphi code (does not check all possible errors) outputs x: 0.5981 y: 1.9641
var
a, b, r, a2, b2: Double;
aa, bb, cc, dis, y1, y2, x1, x2: Double;
begin
a := 3;
b := 4;
r := 5;
a2 := a * a;
b2:= b * b;
aa := 4 * (b2 + a2);
bb := 4 * a * (a2 + b2);
cc := b2 * b2 - 4 * b2 * r * r + a2 * a2 + 2 * a2 * b2;
dis := bb * bb - 4 * aa * cc;
if Dis < 0 then begin
ShowMessage('no solutions');
Exit;
end;
y1 := (- bb - Sqrt(Dis)) / (2 * aa);
y2 := (- bb + Sqrt(Dis)) / (2 * aa);
x1 := (a2 - b2 + 2 * a * y1) / (2 * b);
x2 := (a2 - b2 + 2 * a * y2) / (2 * b);
if x1 * x1 + y1 * y1 <= r * r then
Memo1.Lines.Add(Format('x: %6.4f y: %6.4f', [x1, y1]))
else
if x2 * x2 + y2 * y2 <= r * r then
Memo1.Lines.Add(Format('x: %6.4f y: %6.4f', [x2, y2]));
From your diagram you have point P that you need it's X & Y coordinate. So we need to find Px and Py or (Px,Py). We know that Ax = Px and By = Py. We can use these for substitution if needed. We know that C & P create a line and all lines have slope in the form of y = mx + b. Where the slope is m and the y intercept is b. We don't know m or b at this point but they can be found. We know that the angle of between two vectors where the vectors are CP and PB gives an angle of 120°, but this does not put the angle in standard position since this is a CW rotation. When working with circles and trig functions along with linear equations of slope within them it is best to work in standard form. So if this line of y = mx + b where the points C & P belong to it the angle above the horizontal line that is parallel to the horizontal axis that is made by the points P & B will be 180° - 120° = 60° We also know that the cos angle between two vectors is also equal to the dot product of those vectors divided by the product of their magnitudes.
We don't have exact numbers yet but we can construct a formula: Since theta = 60° above the horizontal in the standard position we know that the slope m is also the tangent of that angle; so the slope of this line is tan(60°). So let's go back to our linear equation y = tan(60°)x + b. Since b is the y intercept we need to find what x is when y is equal to 0. Since we still have three undefined variables y, x, and b we can use the points on this line to help us here. We know that the points C & P are on this line. So this vector of y = tan(60°)x + b is constructed from (Px, Py) - (Cx, Cy). The vector is then (Px-Cx, Py-Cy) that has an angle of 60° above the horizontal that is parallel to the horizontal axis. We need to use another form of the linear equation that involves the points and the slope this time which happens to be y - y1 = m(x - x1) so this then becomes y - Py = tan(60°)(x - Px) well I did say earlier that we could substitute so let's go ahead and do that: y - By = tan(60°)(x - Ax) then y - By = tan(60°)x - tan(60°)Ax. And this becomes known if you know the actual coordinate points of A & B. The only thing here is that you have to convert your angle of 120° to standard form. It all depends on what your known and unknowns are. So if you need P and you have both A & B are known from your diagram the work is easy because the points you need for P will be P(Ax,By). And since you already said that you know Da, Db & Dc with their lengths then its just a matter of apply the correct trig functions with the proper angle and or using the Pythagorean Theorem to find the length of another leg of the triangle. It shouldn't be all that hard to find what P(x,y) is from the other points. You can use the trig functions, linear equations, the Pythagorean theorem, vector calculations etc. If you can find the equation of the line that points C & P knowing that P has A's x value and has B's y value and having the slope of that line that is defined by the tangent above the horizontal which is 180° - phi where phi is the angle you are giving that is CW rotation and theta would be the angle in standard position or above the horizontal you have a general form of y - By = tan(180° - phi)(x - Ax) and from this equation you can find any point on that line.
There are other methods such as using the existing points and the vectors that they create between each other and then generate an equilateral triangle using those points and then from that equilateral if you can generate one, you can use the perpendicular bisectors of that triangle to find the centroid of that triangle. That is another method that can be done. The only thing you may have to consider is the linear translation of the line from the origin. Thus you will have a shift in the line of (Ax - origin, By - origin) and to find one set the other to 0 and vise versa. There are many different methods to find it.
I just showed you several mathematical techniques that can help you to find a general equation based on your known(s) and unknown(s). It just a matter of recognizing which equations work in which scenario. Once you recognize the correct equations for the givens; the rest is fairly easy. I hope this helps you.
EDIT
I did forget to mention one thing; and that is the line of CP has a point on the edge of the circle defined by (cos(60°), sin(60°)) in the 1st quadrant. In the third quadrant you will have a point on this line and the circle defined by (-cos(60°), -sin(60°)) provided that this line goes through the origin (0,0) where there is no y nor x intercepts and if this is the case then the point on the circle at either end and the origin will be the radius of that circle.

Quick Equation to solve Camera rotation based on parent scale

I've got a camera attached to a parent that scales causing the camera to "zoom". I want the camera to tilt more at a lower scale. I need an equation that will tilt the camera between the min and max based on the scale of the parent.
Any help would be greatly appreciated =)
See the diagram below:
Instead of scale, you need distances. Consider the variable verical distance y and the target horizontal distance x which you want to keep fixed. The angle of the camera θ is related by
θ = ATAN(y/x)*(180/π)
Given the end conditions y_1/x = TAN(20°) and y_2/x = TAN(40°) one finds that
y_2 = TAN(40°)/TAN(20°)*y_1 = 2.3054*y_1
x = COS(20°)/SIN(20°)*y_1 = 2.7474*y_1
The initial height y_1 is required to compute the horizontal distance x.
Now since s=0.1 means y(s)=y_1 and s=1.0 means y(s)=y_2 then
y(s) = 10/9*(y_2-y_1)*s+(10*y_1-y_2)/9
= y_1*10*(1-s)/9+y_1*(10*s-1)*TAN(40°)/(9*TAN(20°))
= y_1*(1.450*s+0.855)
TAN(θ) = y(s)/x
TAN(θ) = 10*(1-s)*TAN(20°)/9+(10*s-1)*TAN(40°)/9
Use this:
θ(s) = 180/π*ATAN(0.5279*s+0.3112)
With the following example values
s θ(s)
0.1 20°
0.55 31°
1.0 40°
If I'm reading it right, the Scale varies from 0.1 to 1.0, and you want the Angle to vary from 20 to 40 degrees. Right?
A simple linear formula would look like
CurrentAngle = MinAngle + (CurrentScale - MinScale) * (MaxAngle - MinAngle) / (MaxScale - MinScale)
= 20 + (CurrentScale - 0.1) * (40 - 20) / (1 - 0.1)
= 20 + (CurrentScale - 0.1) * 20 / 0.9
So if you use 0.64 as the CurrentScale, as in your example above, you'd get
= 20 + (0.64 - 0.1) * 20 / 0.9
= 32
Linear is the simplest mathematically, but if your application is animated or needs to change the angle faster on one end or the other of your scale, you may get a more polished result from using a formula with a curve to it (logarithmic, parabolic or exponential, maybe?).

Intersection points of oval and line

Using this function to draw a "Circle", I really come up with something of an oval. This is because of malformed pixels I am working with that aren't really relevant other than they make this function necessary.
local function drawCircle( centerX, centerY, radius, col, solid )
solid = solid or false
local isAdvanced = term.isColor and term.isColor()
local char = isAdvanced and " " or "|"
if isAdvanced then term.setBackgroundColor( col ) end
local radStep = 1/(1.5*radius)
for angle = 1, math.pi+radStep, radStep do
local pX = math.cos( angle ) * radius * 1.5
local pY = math.sin( angle ) * radius
if solid then
local chord = 2*math.abs(pX)
term.setCursorPos( centerX - chord/2, centerY - pY )
write( char:rep( chord ) )
term.setCursorPos( centerX - chord/2, centerY + pY )
write( char:rep( chord ) )
else
for i=-1,1,2 do
for j=-1,1,2 do
term.setCursorPos( centerX + i*pX, centerY + j*pY )
write( char )
end
end
end
end
end
Now, I'm making a game that involves planets (ei the circle), but because of limitations I can only run it at 10 FPS. I end up with so much acceleration in the game that the ship can move faster per 10th of a second than the diameter of the "circle", so I'm looking for a simple (and hopefully fast) way to calculate if the ship will hit the planet when it magically teleports between point A and point B.
As an example, lets say I have my ship at 75, 100 and it's momentum will move it +80, -50. It'll end up at 155, 50. Between those two points is my planet, but how do I detect it?
I've googled a bit, but didn't come up with anything I could comprehend. I'm in 11th grade math, just solving systems of equations, although I'm also in engineering classes, where I learned force vectors.
If it helps, the planet doesn't move.
You have two equations:
(1) The circle:
(k*x)^2 + y^2 = r^2
(The 'k' squeezes the graph to achieve an oval. In your case k = 2/3. There's a site "Purple Math" with a chapter on "Transformations". Read it.)
(2) The line:
a*x + b*y = c
Now, you'll notice that, for simplicity, I assumed the circle's center is at the origin. In your case it usually isn't, so you'll simply shift the line's start and end points to match it. (It doesn't matter where objects are: it only matters where they're in relation to each other. So we're allowed to move objects as a group up/down right/left however we want.)
So we have two equations. "Solving them" = "finding the points where they touch" = "collision". So we need to solve them. To solve them you find y from equation (2) and replace it in equation (1). You get an equation with only x (and x^2):
.... x ... x^2 .... = ....
You arrange ("factor") this equation on x:
x^2(b^2 k^2 + a^2) + x(-2ac) + c^2 - r^2 b^2 = 0
That's a quadratic formula.
Now, you're asking whether the oval and line intersect ("calculate if the ship will hit the planet"). In other words, you're asking whether there's any solution to this equation (you're not asking for the solutions themselves). There's a solution if the discriminant is greater/equal to zero. The discriminant is "B^2 - 4AC", where:
A = b^2 k^2 + a^2
B = -2ac
C = c^2 - r^2 b^2
So "B^2 - 4AC" is:
4*b^2*(a^2*r^2+b^2*r^2*k^2-k^2*c^2)
That's all!
It's a simple expression.
You know b,a,r,k,c, so you put them in that expression and if it's greater/equal to zero you know there's a collision.
If you don't understand my explanation, install GeoGebra, then type into it:
k = 0.5
r = 1
circ: (k x)² + y² = r²
a = 5
b = -2.5
c = 4
line: a x + b y = c
dis = 4a² b² r² + 4b⁴ k² r² - 4b² c² k²
Now, make k/r/a/b/c sliders and change their values with your mouse. You'll notice that when there's a collision, "dis" (the discriminant) is negative.
Finally, what you've left to do:
You need to write a function that gets the circle and line and tells if there's a collision:
function do_collide(
-- the circle:
centerX, centerY, radius,
-- the line:
x1, y1, x2, y2)
-- Step 1:
-- You already know r and k.
-- Step 2:
-- Shift the coordinates (x1,x2) and (x2,y2) by (centerX, centerY).
-- Find the line equation and you have a,b,c.
-- Step 3:
return 4*b^2*(a^2*r^2+b^2*r^2*k^2-k^2*c^2) >= 0
end

Given f(x) linear function, how to obtain a Quadratic Bezier control point

I've been doing a lot of research on the topic and found a couple of post that where helpful but I just can't get this right.
I am developing a very simple structural analysis app. In this app I need to display a graph showing the internal stress of the beam. The graph is obtained by the formula:
y = (100 * X / 2) * (L - X)
where L is the known length of the beam (lets say its 1 for simplicity). And X is a value between 0 and the Length of be beam. So the final formula would be:
y = (100 * X / 2) * (1 - x) where 0 < X < 1.
Assuming my start and end points are P0 = (0,0) and P2 = (1,0). How can I obtain P2 (control point)?? I have been searching in the Wikipedia page but I am unsure how to obtain the control point from the quadratic bezier curve formula:
B(t) = (1 - t)^2 * P0 + 2*(1 - t)*t * P1 + t^2 * P2
I'm sure it must be such an easy problem to fix… Can anyone help me out?
P.S.: I also found this, How to find the mathematical function defining a bezier curve, which seems to explain how to do the opposite of what I am trying to achieve. I just can't figure out how to turn it around.
We want the quadratic curve defined by y to match the quadratic Bezier curve
defined by B(t).
Among the many points that must match is the peak which occurs at x =
0.5. When x = 0.5,
y = (100 * x / 2) * (1 - x)
100 1 25
y = ---- * --- = ---- = 12.5
4 2 2
Therefore, let's arrange for B(0.5) = (0.5, 12.5):
B(t) = (1-t)^2*(0,0) + 2*(1-t)*t*(Px, Py) + t^2*(1,0)
(0.5, 12.5) = B(0.5) = (0,0) + 2*(0.5)*(0.5)*(Px, Py) + (0.25)*(1,0)
0.5 = 0.5 * Px + 0.25
12.5 = 0.5 * Py
Solving for Px and Py, we get
(Px, Py) = (0.5, 25)
And here is visual confirmation (in Python) that we've found the right point:
# test.py
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 1, 100)
y = (100*x/2)*(1-x)
t = np.linspace(0, 1, 100)
P0 = np.array([0,0])
P1 = np.array([0.5,25])
P2 = np.array([1,0])
B = ((1-t)**2)[:,np.newaxis]*P0 + 2*((1-t)*t)[:,np.newaxis]*P1 + (t**2)[:,np.newaxis]*P2
plt.plot(x, y)
plt.plot(B[:,0], B[:,1])
plt.show()
Running python test.py, we see the two curves overlap:
How did I know to choose t = 0.5 as the parameter value when B(t) reaches its maximum height?
Well, it was mainly based on intuition, but here is a more formal way to prove it:
The y-component of B'(t) equals 0 when B(t) reaches its maximum height. So, taking the derivative of B(t), we see
0 = 2*(1-2t)*Py
t = 0.5 or Py = 0
If Py = 0 then B(t) is a horizontal line from (0,0) to (1,0). Rejecting this degenerate case, we see B(t) reaches its maximum height when t = 0.5.
Your quadratic bezier curve formula has a typo in the middle term. It should be:
B(t) = (1 - t)^2 * P0 + 2 * (1 - t) * t * P1 + t^2 * P2
This means you should take the P1=(1,50) that #unutbu found and divide the coordinates in half to get P1=(.5,25). (This won't matter if you're plotting the parametric equation on your own, but if you want something like LaTeX's \qbezier(0,0)(.5,25)(1,0), then you'll need the corrected point.)
The P1 control point is defined so that the tangent lines at P0 and P2 intersect at P1. Which means that if (P1)x=(P2)x, the graph should be vertical on its righthand side (which you don't want).
In response to your comment, if you have a quadratic y=f(x), then it is symmetrical about its axis (almost tautologically). So the maximum/minimum will occur at the average of the roots (as well as the control point).

axes separated by angles

I'm trying to generate some axis vectors from parameters commonly used to specify crystallographic unit cells. These parameters consist of the length of the three axes: a,b,c and the angles between them: alpha,beta,gamma. By convention alpha is the angle between the b and c axes, beta is between a and c, and gamma between a and b.
Now getting vector representations for the first two is easy. I can arbitrarily set the the a axis to the x axis, so a_axis = [a,0,0]. I then need to rotate b away from a by the angle gamma, so I can stay in the x-y plane to do so, and b_axis = [b*cos(gamma),b*sin(gamma),0].
The problem is the third vector. I can't figure out a nice clean way to determine it. I've figured out some different interpretations but none of them have panned out. One is imagining the there are two cones around the axes axis_a and axis_b whose sizes are specified by the angles alpha and beta. The intersection of these cones create two lines, the one in the positive z direction can be used as the direction for axis_c, of length c.
Does someone know how I should go about determining the axis_c?
Thanks.
The angle alpha between two vectors u,v of known length can be found from their inner (dot) product <u,v>:
cos(alpha) = <u,v>/(||u|| ||v||)
That is, the cosine of alpha is the inner product of the two vectors divided by the product of their lengths.
So the z-component of your third can be any nonzero value. Scaling any or all of the axis vectors after you get the angles right won't change the angles, so let's assume (say) Cz = 1.
Now the first two vectors might as well be A = (1,0,0) and B = (cos(gamma),sin(gamma),0). Both of these have length 1, so the two conditions to satisfy with choosing C are:
cos(alpha) = <B,C>/||C||
cos(beta) = <A,C>/||C||
Now we have only two unknowns, Cx and Cy, to solve for. To keep things simple I'm going to just refer to them as x and y, i.e. C = (x,y,1). Thus:
cos(alpha) = [cos(gamma)*x + sin(gamma)*y]/sqrt(x^2 + y^2 + 1)
cos(beta) = x/(sqrt(x^2 + y^2 + 1)
Dividing the first equation by the second (assuming beta not a right angle!), we get:
cos(alpha)/cos(beta) = cos(gamma) + sin(gamma)*(y/x)
which is a linear equation to solve for the ratio r = y/x. Once you have that, substituting y = rx in the second equation above and squaring gives a quadratic equation for x:
cos^2(beta)*((1+r^2)x^2 + 1) = x^2
cos^2(beta) = (1 - cos^2(beta)*(1 + r^2))x^2
x^2 = cos^2(beta)/[(1 - cos^2(beta)*(1 + r^2))]
By squaring the equation we introduced an artifact root, corresponding to choosing the sign of x. So check the solutions for x you get from this in the "original" second equation to make sure you get the right sign for cos(beta).
Added:
If beta is a right angle, things are simpler than the above. x = 0 is forced, and we have only to solve the first equation for y:
cos(alpha) = sin(gamma)*y/sqrt(y^2 + 1)
Squaring and multiplying away the denominator gives a quadratic for y, similar to what we did before. Remember to check your choice of a sign for y:
cos^2(alpha)*(y^2 + 1) = sin^2(gamma)*y^2
cos^2(alpha) = [sin^2(gamma) - cos^2(alpha)]*y^2
y^2 = cos^2(alpha)/[sin^2(gamma) - cos^2(alpha)]
Actually if one of the angles alpha, beta, gamma is a right angle, it might be best to label that angle gamma (between the first two vectors A,B) to simplify the computation.
Here is a way to find all Cx, Cy, Cz (first two are the same as in the other answer), given that A = (Ax,0,0), B = (Bx, By, 0), and assuming that |C| = 1
1) cos(beta) = AC/(|A||C|) = AxCx/|A| => Cx = |A|cos(beta)/Ax = cos(beta)
2) cos(alpha) = BC/(|B||C|) = (BxCx+ByCy)/|B| => Cy = (|B|cos(alpha)-Bx cos(beta))/By
3) To find Cz let O be the point at (0,0,0), T the point at (Cx,Cy,Cz), P be the projection of T on Oxy and Q be the projection of T on Ox. So P is the point at (Cx,Cy,0) and Q is the point at (Cx,0,0). Thus from the right angle triangle OQT we get
tan(beta) = |QT|/||OQ| = |QT|/Cx
and from the right triangle TPQ we get |TP|^2 + |PQ|^2 = |QT|^2. So
Cz = |TP| = sqrt(|QT|^2 - |PQ|^2) = sqrt( Cx^2 tan(beta)^2 - Cy^2 )
I'm not sure if this is correct but I might as well take a shot. Hopefully I won't get a billion down votes...
I'm too lazy to scale the vectors by the necessary amounts, so I'll assume they are all normalized to have a length of 1. You can make some simple modifications to the calculation to account for the varying sizes. Also, I'll use * to represent the dot product.
A = (1, 0, 0)
B = (cos(g), sin(g), 0)
C = (Cx, Cy, Cz)
A * C = cos(beta) //This is just a definition of the dot product. I'm assuming that the magnitudes are 1, so I can skip that portion, and you said that beta was the angle between A and C.
A * C = Cx //I did this by multiplying each corresponding value, and the Cy and Cz were ignored because they were being multiplied by 0
cos(beta) = Cx //Combine the previous two equations
B * C = cos(alpha)
B * C = Cx*cos(g) + Cy*sin(g) = cos(beta) * cos(g) + Cy*sin(g)
(cos(alpha) - cos(beta) * cos(g))/(sin(g)) = Cy
To be honest, I'm not sure how to get the z component of vector C, but I would expect it to be one more relatively easy step. If I can figure it out, I'll edit my post.

Resources