Find the New Position of Vertices Given a Rotation Matrix - math

I have two triangles facing in arbitrary directions. I have the forward vector for both triangles, and I want to align each of the forward vectors to face the same direction. I only have the ability to do rotations about the world x, y and z axis (The software API I am using is very limited).
So, let A = forward vector of the first triangle, and B = forward vector of the second triangle.
I am able to find the Rotation Matrix using this equation:
v = B X A
s = ||v||
c = A dot B
vx = skew-symmetric cross-product matrix of v
R = I + [vx] + [vx]^2 * (1-c)/s^2
I am able to find R.
I am not sure how to use R so that I can move the vertices of triangle B such that the triangle B and triangle A are facing in the same direction.
Picture for Reference:
Thank you all in advance for the help.

You can use normalized vector v as an axis and the angle T between A and B to compute a rotation matrix (right-hand rule) from an axis-angle in the following way:
| cosT + x*x*(1 - cosT) y*x*(1 - cosT) + z*sinT z*x*(1 - cosT) - y*sinT |
| x*y*(1 - cosT) - z*sinT cosT + y*y*(1 - cosT) z*y*(1 - cosT) + x*sinT |
| x*z*(1 - cosT) + y*sinT y*z*(1 - cosT) - x*sinT cosT + z*z*(1 - cosT) |
x, y, z values refers to normalized v coordinates.
Now, you apply this matrix to each vertex in B.
PS: This matrix is in column-major order, you might want to transpose it.

You can do this more easily by calculating the angle between to forward vectors first:
theta = arccos(dot(A, B)/(length(A)*length(B)))
This gives you the angle by which you want to rotate your triangle. Then you can put this angle in the 2D rotation matrix and use it to calculate each vertex's new position:
vector2 newPos = R*oldPos, Where R is the rotation matrix

Related

Scaling the X axis of a rotated ellipse

I have a scatter plot and I'm allowing points to be selected by drawing an ellipse like so:
In the above image the X axis and Y axis are scaled differently. I'm trying to implement functionality to allow the scale of each axis to be changed, but I'm having trouble scaling the ellipse shape with the axis. Changing the scale of the X axis to match the Y axis gives this:
I know I can scale the cx value of the ellipse with the X axis to get the new centre of the ellipse, but I don't know how to work out the new rx, ry and rotation angle. So my question is given a rotated ellipse with values cx, cy, rx, ry and rotation in radians, how do I calculate the new values for the ellipse given a scale value s for either the X axis or Y Axis? For clarity the rotation is done about the centre (cx, cy) of the ellipse.
I think I understand your problem. For an axis-aligned ellipse with points (x,y), the shape of (a*x,b*y) is still an ellipse with some arbitrary scaling factors a and b acting on the major and minor radii.
But for a rotated ellipse this is not true. In addition to the major and minor radii scaling differently, the rotation angle might differ also.
So mathematically the problem is as such: The parametric points of a rotated ellipse are
with θ the rotation angle r_1 and r_2 the original ellipse radii. The parameter t goes from 0 to 2π.
Now to find the modified parameters such that the ellipse matches a scaled version of the above
The above two are combined into one equation to be solved for r_1' and r_2' as well as θ' for all values of t.
Unfortunately, there is no solution that I can think of, because the combined 2×2 matrix on the RHS in front of the vector needs to be diagonalized by finding the appropriate rotation θ' to bring it down to this form
which is trivially solved for r_1' and r_2'.
But the rotation needs to satisfy two contradictory equations
tan(θ') = (a/b)*tan(θ) and tan(θ') = (b/a)*tan(θ)
which can only be solved if the two scaling factors are identical => a==b.
I suggest posting this problem into the [Mathematics.SE] as math problem, before trying to implement it as an algorithm. Maybe you will have better luck.
The computation is not that easy.
The equation of a rotated ellipse centered at the origin is
(c x + s y)² / a² + (s x - c y)² / b² = 1 = A x² + 2B xy + C y²
(c, s denote the cosine and sine of the rotation angle.) After development, the quadratic coefficients are
A = c² / a² + s² / b², 2B = 2 cs / a² - 2 sc / b², C = s² / a² + c² / b².
When you have the coefficients, you can retrieve 1/a², 1/b², c, s as the Eigenvalues and first Eigen vector of the 2x2 matrix
|A B|
|B C|
and the rotation angle is given by tan Θ = s / c.
Now let us stretch the abscissas by applying a coefficient r, giving
A' = r² A, B' = r B, C' = C.
The matrix becomes
|r²A rB|
|rB C|
and again, you will find the axis and cosine/sine of the angle by computing the Eigenvalues and first Eigenvector.
The Eigenvalues are roots of the polynomial
z² + (r²A + C) z + r²(AC - B²)
where A, B, C are computed as above, and the Eigenvector follows
(r²A - z) c + rB s = 0
from which you draw s/c.

Find a vector tangent to a circle

I need to move a point by vectors of fixed norm around a central circle.
So to do this, I need to calculate the circle tangent vector to apply to my point.
Here is a descriptive graph :
So I know p1 coordinates, circle radius and center, and the vector norm d. I need to find p2 (= finding the vector v orientation).
I put on the graph some ideas I got to find it : p1' is p1 projected on the circle. And t is the tangent vector to C in p1'.
That should be easy, but I'm too weak in maths to figure how to implement this. So I would like an idea of the implementation this (language agnostic is okay, javascript is cool).
Extra cool if you can also get me how to implement clockwise and counter clockwise movement with this.
Edit : Obtained this
let vx = cx - p1x,
vy = cy - p1y,
norm = Math.sqrt((vx * vx) + (vy * vy)),
p2x = p1x - (vy * d / norm),
p2y = p1y + (vx * d / norm);
But there is still a quirk : using this on time, the point is slowly getting away from the center of the circle, performing a spiral.
Obtain vector Center of circle - point P1. Let's call this vector
v1.
Tangent vector 't' is perpendicular to v1. If v1=(vx, vy) then
t=(-vy,vx) . Just swap values and a sign (I wrote -vy, it could also be -vx, but not both -vy,-vx).
Setting one direction or the order is just using t2= -t1= (vy, -vx), or (-vy, vx)
For movements you must use normalized (||v|| = 1) vectors.

Projecting to a 2D Plane for Barycentric Calculations

I have three vertices which make up a plane/polygon in 3D Space, v0, v1 & v2.
To calculate barycentric co-ordinates for a 3D point upon this plane I must first project both the plane and point into 2D space.
After trawling the web I have a good understanding of how to calculate barycentric co-ordinates in 2D space, but I am stuck at finding the best way to project my 3D points into a suitable 2D plane.
It was suggested to me that the best way to achieve this was to "drop the axis with the smallest projection". Without testing the area of the polygon formed when projected on each world axis (xy, yz, xz) how can I determine which projection is best (has the largest area), and therefore is most suitable for calculating the most accurate barycentric co-ordinate?
Example of computation of barycentric coordinates in 3D space as requested by the OP. Given:
3D points v0, v1, v2 that define the triangle
3D point p that lies on the plane defined by v0, v1 and v2 and inside the triangle spanned by the same points.
"x" denotes the cross product between two 3D vectors.
"len" denotes the length of a 3D vector.
"u", "v", "w" are the barycentric coordinates belonging to v0, v1 and v2 respectively.
triArea = len((v1 - v0) x (v2 - v0)) * 0.5
u = ( len((v1 - p ) x (v2 - p )) * 0.5 ) / triArea
v = ( len((v0 - p ) x (v2 - p )) * 0.5 ) / triArea
w = ( len((v0 - p ) x (v1 - p )) * 0.5 ) / triArea
=> p == u * v0 + v * v1 + w * v2
The cross product is defined like this:
v0 x v1 := { v0.y * v1.z - v0.z * v1.y,
v0.z * v1.x - v0.x * v1.z,
v0.x * v1.y - v0.y * v1.x }
WARNING - Almost every thing I know about using barycentric coordinates, and using matrices to solve linear equations, was learned last night because I found this question so interesting. So the following may be wrong, wrong, wrong - but some test values I have put in do seem to work.
Guys and girls, please feel free to rip this apart if I screwed up completely - but here goes.
Finding barycentric coords in 3D space (with a little help from Wikipedia)
Given:
v0 = (x0, y0, z0)
v1 = (x1, y1, z1)
v2 = (x2, y2, z2)
p = (xp, yp, zp)
Find the barycentric coordinates:
b0, b1, b2 of point p relative to the triangle defined by v0, v1 and v2
Knowing that:
xp = b0*x0 + b1*x1 + b2*x2
yp = b0*y0 + b1*y1 + b2*y2
zp = b0*z0 + b1*z1 + b2*z2
Which can be written as
[xp] [x0] [x1] [x2]
[yp] = b0*[y0] + b1*[y1] + b2*[y2]
[zp] [z0] [z1] [z2]
or
[xp] [x0 x1 x2] [b0]
[yp] = [y0 y1 y2] . [b1]
[zp] [z0 z1 z2] [b2]
re-arranged as
-1
[b0] [x0 x1 x2] [xp]
[b1] = [y0 y1 y2] . [yp]
[b2] [z0 z1 z2] [zp]
the determinant of the 3x3 matrix is:
det = x0(y1*z2 - y2*z1) + x1(y2*z0 - z2*y0) + x2(y0*z1 - y1*z0)
its adjoint is
[y1*z2-y2*z1 x2*z1-x1*z2 x1*y2-x2*y1]
[y2*z0-y0*z2 x0*z2-x2*z0 x2*y0-x0*y2]
[y0*z1-y1*z0 x1*z0-x0*z1 x0*y1-x1*y0]
giving:
[b0] [y1*z2-y2*z1 x2*z1-x1*z2 x1*y2-x2*y1] [xp]
[b1] = ( [y2*z0-y0*z2 x0*z2-x2*z0 x2*y0-x0*y2] . [yp] ) / det
[b2] [y0*z1-y1*z0 x1*z0-x0*z1 x0*y1-x1*y0] [zp]
If you need to test a number of points against the triangle, stop here. Calculate the above 3x3 matrix once for the triangle (dividing it by the determinant as well), and then dot product that result to each point to get the barycentric coords for each point.
If you are only doing it once per triangle, then here is the above multiplied out (courtesy of Maxima):
b0 = ((x1*y2-x2*y1)*zp+xp*(y1*z2-y2*z1)+yp*(x2*z1-x1*z2)) / det
b1 = ((x2*y0-x0*y2)*zp+xp*(y2*z0-y0*z2)+yp*(x0*z2-x2*z0)) / det
b2 = ((x0*y1-x1*y0)*zp+xp*(y0*z1-y1*z0)+yp*(x1*z0-x0*z1)) / det
That's quite a few additions, subtractions and multiplications - three divisions - but no sqrts or trig functions. It obviously does take longer than the pure 2D calcs, but depending on the complexity of your projection heuristics and calcs, this might end up being the fastest route.
As I mentioned - I have no idea what I'm talking about - but maybe this will work, or maybe someone else can come along and correct it.
Update: Disregard, this approach does not work in all cases
I think I have found a valid solution to this problem.
NB: I require a projection to 2D space rather than working with 3D Barycentric co-ordinates as I am challenged to make the most efficient algorithm possible. The additional overhead incurred by finding a suitable projection plane should still be smaller than the overhead incurred when using more complex operations such as sqrt or sin() cos() functions (I guess I could use lookup tables for sin/cos but this would increase the memory footprint and defeats the purpose of this assignment).
My first attempts found the delta between the min/max values on each axis of the polygon, then eliminated the axis with the smallest delta. However, as suggested by #PeterTaylor there are cases where dropping the axis with the smallest delta, can yeild a straight line rather than a triangle when projected into 2D space. THIS IS BAD.
Therefore my revised solution is as follows...
Find each sub delta on each axis for the polygon { abs(v1.x-v0.x), abs(v2.x-v1.x), abs(v0.x-v2.x) }, this results in 3 scalar values per axis.
Next, multiply these scaler values to compute a score. Repeat this, calculating a score for each axis. (This way any 0 deltas force the score to 0, automatically eliminating this axis, avoiding triangle degeneration)
Eliminate the axis with the lowest score to form the projection, e.g. If the lowest score is in the x-axis, project onto the y-z plane.
I have not had time to unit test this approach but after preliminary tests it seems to work rather well. I would be eager to know if this is in-fact the best approach?
After much discussion there is actually a pretty simple way to solve the original problem of knowing which axis to drop when projecting to 2D space. The answer is described in 3D Math Primer for Graphics and Game Development as follows...
"A solution to this dilemma is to
choose the plane of projection so as
to maximize the area of the projected
triangle. This can be done by
examining the plane normal; the
coordinate that has the largest
absolute value is the coordinate that
we will discard. For example, if the
normal is [–1, 0, 0], then we would
discard the x values of the vertices
and p, projecting onto the yz plane."
My original solution which involved computing a score per axis (using sub deltas) is flawed as it is possible to generate a zero score for all three axis, in which case the axis to drop remains undetermined.
Using the normal of the collision plane (which can be precomputed for efficiency) to determine which axis to drop when projecting into 2D is therefore the best approach.
To project a point p onto the plane defined by the vertices v0, v1 & v2 you must calculate a rotation matrix. Let us call the projected point pd
e1 = v1-v0
e2 = v2-v0
r = normalise(e1)
n = normalise(cross(e1,e2))
u = normalise(n X r)
temp = p-v0
pd.x = dot(temp, r)
pd.y = dot(temp, u)
pd.z = dot(temp, n)
Now pd can be projected onto the plane by setting pd.z=0
Also pd.z is the distance between the point and the plane defined by the 3 triangles. i.e. if the projected point lies within the triangle, pd.z is the distance to the triangle.
Another point to note above is that after rotation and projection onto this plane, the vertex v0 lies is at the origin and v1 lies along the x axis.
HTH
I'm not sure that the suggestion is actually the best one. It's not too hard to project to the plane containing the triangle. I assume here that p is actually in that plane.
Let d1 = sqrt((v1-v0).(v1-v0)) - i.e. the distance v0-v1.
Similarly let d2 = sqrt((v2-v0).(v2-v0))
v0 -> (0,0)
v1 -> (d1, 0)
What about v2? Well, you know the distance v0-v2 = d2. All you need is the angle v1-v0-v2. (v1-v0).(v2-v0) = d1 d2 cos(theta). Wlog you can take v2 as having positive y.
Then apply a similar process to p, with one exception: you can't necessarily take it as having positive y. Instead you can check whether it has the same sign of y as v2 by taking the sign of (v1-v0)x(v2-v0) . (v1-v0)x(p-v0).
As an alternative solution, you could use a linear algebra solver on the matrix equation for the tetrahedral case, taking as the fourth vertex of the tetrahedron v0 + (v1-v0)x(v2-v0) and normalising if necessary.
You shouldn't need to determine the optimal area to find a decent projection.
It's not strictly necessary to find the "best" projection at all, just one that's good enough, and that doesn't degenerate to a line when projected into 2D.
EDIT - algorithm deleted due to degenerate case I hadn't thought of

formula for best approximation for center of 2D rotation with small angles

This is not a homework. I am asking to see if problem is classical (trivial) or non-trivial. It looks simple on a surface, and I hope it is truly a simple problem.
Have N points (N >= 2) with
coordinates Xn, Yn on a surface of
2D solid body.
Solid body has some small rotation (below Pi/180)
combined with small shifts (below 1% of distance between any 2 points of N). Possibly some small deformation too (<<0.001%)
Same N points have new coordinates named XXn, YYn
Calculate with best approximation the location of center of rotation as point C with coordinates XXX, YYY.
Thank you
If you know correspondence (i.e. you know which points are the same before and after the transformation), and you choose to allow scaling, then the problem is a set of linear equations. If you have 2 or more points then you can find a least-squares solution with little difficulty.
For initial points (xi,yi) and transformed points (xi',yi') you have equations of the form
xi' = a xi + b yi + c
yi' =-b xi + a yi + d
which you can rearrange into a linear system
A x = y
where
A = | x1 y1 1 0 |
| y1 -x1 0 1 |
| x2 y2 1 0 |
| y2 -x2 0 1 |
| ... |
| xn yn 1 0 |
| yn -xn 0 1 |
x = | a |
| b |
| c |
| d |
y = | x1' |
| y1' |
| x2' |
| y2' |
| ... |
| xn' |
| yn' |
the standard "least-squares" form of which is
A^T A x = A^T y
and has the solution
x = (A^T A)^-1 A^T y
with A^T as the transpose of A and A^-1 as the inverse of A. Normally you would use an SVD or QR decomposition to compute the solution as they ought to be more stable and less computationally intensive than the inverse.
Once you've found x (and so the four elements of the transformation a, b, c and d) then the various elements of the transformation are given by
scale = sqrt(a*a+b*b)
rotation = atan2(b,a)
translation = (c,d)/scale
If you don't include scaling then the system is non-linear, and requires an iterative solution (but isn't too difficult to solve). If you do not know correspondence then the problem is substantially harder, for small transformations something like iterated closest point works, for large transformations it's a lot harder.
Edit: I forgot to include the centre of rotation. A rotation theta about an arbitrary point p is a sequence
translate(p) rotate(theta) translate(-p)
if you expand it all out as an affine transformation (essentially what we have above) then the translation terms come to
dx = px - cos(theta)*px + sin(theta)*py
dy = py - sin(theta)*px - cos(theta)*py
we know theta (rotation), dx (c) and dy (d) from the equations above. With a little bit of fiddling we can solve for px and py
px = 0.5*(dx - sin(theta)*dy/(1-cos(theta)))
py = 0.5*(dy + sin(theta)*dx/(1-cos(theta)))
You'll notice that the equations are undefined if theta is zero, because there is no centre of rotation when no rotation is performed.
I think I have all that correct, but I don't have time to double check it all right now.
Look up the "Kabsch Algorithm". It is a general-purpose algorithm for creating rotation matrices using N known pairs. Kabsch created it to assist denoising stereo photographs. You rotate a feature in picture A to picture B, and if it is not in the target position, the feature is noise.
http://en.wikipedia.org/wiki/Kabsch_algorithm
See On calculating the finite centre of rotation for
rigid planar motion for a relatively simple solution. I say "relatively simple" because it still uses things like psuedo-inverses and SVD (singular value decomposition). And here's a wikipedia article on Instant centre of rotation. And another paper: ESTIMATION OF THE FINITE CENTER OF ROTATION IN PLANAR MOVEMENTS.
If you can handle stiffer stuff, try Least Squares Estimation of Transformation Parameters Between Two Point Patterns.
First of all, the problem is non-trivial.
A "simple" solition. It works best when the polygon resembles circle, and points are distributed evenly.
iterate through N
For both old and new dataset, find the 2 farthest points of the point N.
So now you have the triangle before and after the transformation. Use the clockwise direction from the center of each triangle to number its vertices as [0] (=the N-th point in the original dataset), [1], and [2] (the 2 farthest points).
Calculate center of rotation, and deformation (both x and y) of this triangle. If the deformation is more then your 0.001% - drop the data for this triangle, otherwise save it.
Calculate the average for the centers of rotation.
The right solution: define the function Err(Point BEFORE[N], Point AFTER[N], double TFORM[3][3]), where BEFORE - constant old data points, AFTER - constant new data points, TFORM[3][3] affine transformation matrix, Err(...) function that returns the scalar error value, 0.0 when the TFORM translated BEFORE to exact AFTER, or some >0.0 error value. Then use any numeric math you want to find the minimum of the Err(TFORM): e.g. gradient search.
Calculate polygon centers O1 and O2. Determine line formulae for O1 with (X0, Y0) and O2 with (XX0, YY0). Find intersection of lines to get C.
If I understand your problem correctly, this could be solved in this way:
find extremities (furthest points, probably on several axises)
scale either one to match
their rotation should now be trivial (?)
Choose any 2 points on the body, P1, P2, before and after rotation. Find vectors between these before and after points. Cross these vectors with a vector normal to the plane of rotation. This results in two new vectors, the intersection of the lines formed by the initial points and these two new vectors is the center of the rotation.
{
if P1after = P1before return P1after
if P2after = P2before return P2after
Vector V1 = P1after - P1before
Vector V2 = P2after - P2before
normal = Vn // can be messy to create for arbitrary 3d orientation but is simple if you know orientation, for instance, normal = (0,0,1) for an object in the x,y plane)
Vector VL1 = V1 x Vn //Vector V1 cross product with Vn
Vector VL2 = V2 x Vn
return intersectLines(P1after,VL1,P2after,VL2) //Center of rotation is intersection of two lines
}
intersectLines(Point P1, Vector V1, Point P2, Vector V2)
{
//intersect two lines using point, direction form of a line
//returns a Point
}

Rotation matrix that minimizes distance

Let's say I have two points in 3D space (a and b) and a fixed axis/unit vector called n.
I want to create a rotation matrix that minimizes the euclidan distance between point a (unrotated) and the rotated point b.
E.g:
Q := matrix_from_axis_and_angle (n, alpha);
find the unknown alpha that minimizes sqrt(|a - b*Q|)
Btw - If a solution/algorithm can be easier expressed with unit-quaternions go ahead and use them. I just used matrices to formulate my question because they're more widely used.
Oh - I know there are some degenerated cases ( a or b lying exactly in line with n ect.) These can be ignored. I'm just looking for the case where a single solution can be calculated.
sounds fairly easy. Assume unit vector n implies rotation around a line parallel to n through point x0. If x0 != the origin, translate the coordinate system by -x0 to get points a' and b' relative to new coordinate system origin 0, and use those 2 points instead of a and b.
1) calculate vector ry = n x a
2) calculate unit vector uy = unit vector in direction ry
3) calculate unit vector ux = uy x n
You now have a triplet of mutually perpendicular unit vectors ux, uy, and n, which form a right-handed coordinate system. It can be shown that:
a = dot(a,n) * n + dot(a,ux) * ux
This is because unit vector uy is parallel to ry which is perpendicular to both a and n. (from step 1)
4) Calculate components of b along unit vectors ux, uy. a's components are (ax,0) where ax = dot(a,ux). b's components are (bx,by) where bx = dot(b,ux), by = dot(b,uy). Because of the right-handed coordinate system, ax is always positive so you don't actually need to calculate it.
5) Calculate theta = atan2(by, bx).
Your rotation matrix is the one which rotates by angle -theta relative to coordinate system (ux,uy,n) around the n-axis.
This yields degenerate answers if a is parallel to n (steps 1 and 2) or if b is parallel to n (steps 4, 5).
I think you can rephrase the question to:
what is the distance from a point to a 2d circle in 3d space.
the answer can be found here
so the steps needed are as following:
rotating the point b around a vector n gives you a 2d circle in 3d space
using the above, find the distance to that circle (and the point on the circle)
the point on the circle is the rotated point b you are looking for.
deduce the rotated angle
...or something ;^)
The distance will be minimized when the vector from a to the line along n lines up with the vector from b to the line along n.
Project a and b into the plane perpendicular to n and solve the problem in 2 dimensions. The rotation you get there is the rotation you need to minimize the distance.
Let P be the plane that is perpendicular to n.
We can find the projection of a into the P-plane, (and similarly for b):
a' = a - (dot(a,n)) n
b' = b - (dot(b,n)) n
where dot(a,n) is the dot-product of a and n
a' and b' lie in the P-plane.
We've now reduced the problem to 2 dimensions. Yay!
The angle (of rotation) between a' and b' equals the angle (of rotation) needed to swing b around the n-axis so as to be closest to a. (Think about the shadows b would cast on the P-plane).
The angle between a' and b' is easy to find:
dot(a',b') = |a'| * |b'| * cos(theta)
Solve for theta.
Now you can find the rotation matrix given theta and n here:
http://en.wikipedia.org/wiki/Rotation_matrix
Jason S rightly points out that once you know theta, you must still decide to rotate b clockwise or counterclockwise about the n-axis.
The quantity, dot((a x b),n), will be a positive quantity if (a x b) lies in the same direction as n, and negative if (a x b) lies in the opposite direction. (It is never zero as long as neither a nor b is collinear with n.)
If (a x b) lies in the same direction as n, then b has to be rotated clockwise by the angle theta about the n-axis.
If (a x b) lies in the opposite direction, then b has to be rotated clockwise by the angle -theta about the n-axis.

Resources