Swift: Cannot Store Unsafe Pointers in Array - pointers

I created a small struct to hold version numbers.
Now I searched a compact way to parse the numbers directly into the variables of the struct. I tried to implement it this way:
struct Version {
var major: Int = 0
var minor: Int = 0
var revision: Int = 0
init(string: String) {
let components = string.componentsSeparatedByString(".")
if 1...3 ~= components.count {
var targets = [&major, &minor, &revision]
for index in 0...2 {
var scanner = NSScanner(string: components[index])
if (!scanner.scanInteger(target[index])) {
major = 0
minor = 0
revision = 0
return
}
}
}
}
}
But I get this error message:
Type '[inout Int]' of variable is not materializable
I do not understand this error. Is there a way to implement it in this way, using a sort of pointers to the member variables?
Update
In the end I did not use unsafe pointers. This was my final implementation:
init(string: String) {
let components = string.componentsSeparatedByString(".")
if 1...3 ~= components.count {
var values = [0, 0, 0]
for index in 0..<components.count {
var scanner = NSScanner(string: components[index])
if (!scanner.scanInteger(&values[index])) {
return
}
}
major = values[0]
minor = values[1]
revision = values[2]
}
}

The problem is how to get a pointer to the variables at all. It is possible
using withUnsafeMutablePointers():
init(string: String) {
let components = string.componentsSeparatedByString(".")
if 1...3 ~= components.count {
withUnsafeMutablePointers(&major, &minor, &revision) {
(p1, p2, p3) -> Void in
let targets = [p1, p2, p3]
for index in 0...2 {
var scanner = NSScanner(string: components[index])
if (!scanner.scanInteger(targets[index])) {
self.major = 0
self.minor = 0
self.revision = 0
break
}
}
}
}
}
but the code would probably better readable with three separate cases instead
of a pointer array.

in-out is not UnsafePointer nor UnsafeMutablePointer, only if the function accepts Unsafe???Pointer<T> family arguments, in-out expression will be passed as corresponding pointer types. see: the docs
try this:
var targets:[Int] = [0,0,0];
for index in 0...2 {
var scanner = NSScanner(string: components[index])
if (!scanner.scanInteger(&targets[index])) {
major = 0
minor = 0
revision = 0
return
}
}
major = targets[0]
minor = targets[1]
revision = targets[2]
OR
var targets:[UnsafeMutablePointer<Int>] = []
targets.append(&major)
targets.append(&minor)
targets.append(&revision)
for index in 0...2 {
var scanner = NSScanner(string: components[index])
if (!scanner.scanInteger(targets[index])) {
major = 0
minor = 0
revision = 0
return
}
}

Related

I'm trying to read data from an hash table into a linked list

Im trying to read data from an global hashtable into a linked list. I cant seem to see where I went wrong. Each time I run the program, I get a runtime error.
node *locallinkedlist = NULL;
//Reading Data From the global hashtable into a local linked list to find data using binary search
for(int p = 0; p < 25; p++)
{
for(node *c = hashtable[p]; c != NULL; c = c->next)
{
if(locallinkedlist == NULL)
{
locallinkedlist = c;
}
else
{
c = locallinkedlist;
locallinkedlist = c;
}
}
}
for(node *h = locallinkedlist; h != NULL; h=h->next)
{
printf("%s",h->employeefirstname);
}
I figured it out!
I need to create a node pointer using malloc inside the inner for loop, for each employee and store each of those employee name inside the node pointer and then put it into the list. Heres my revides code!!:
node *head = NULL;
for(int i = 0; i < 25; i++)
{
for(node *j = hashtable[i]; j != NULL; j = j->next)
{
node *m = malloc(sizeof(node));
if(m == NULL)//Checking for a valid memory address
{
return 1;
}
strcpy(m->employeefirstname,j->employeefirstname);
m->next = NULL;
if(head == NULL)
{
head = m;
}
else
{
m->next = head;
head = m;
}
}
}
for(node *c = head; c != NULL; c = c->next)
{
printf("%s\n",c->employeefirstname);
}

Count number of occurencies of a given substring in a file, Kotlin

I have to write a function, which counts how many times does a substring occurs in the text and return a map (string - counts)
I tried to make it, using .contains, but it doesn't count multiple occurencies in a single word ("la" in "lalala"), and now I'm stuck with how to fix it.
fun countSubstrings(inputName: String, substrings: List<String>): Map<String, Int> {
val map = mutableMapOf<String, Int>()
var tempCounter = 0
for (i in 0 until substrings.size) {
for (line in File(inputName).readLines()) {
for (word in line.split(" ")) {
if (word.contains(substrings[i], true)) tempCounter++
}
}
map.put(substrings[i], tempCounter)
tempCounter = 0
}
return map
}
So, i expect this function to count words, 2-3 char substrings and even 1 char substrings.
Use indexOf to find position of first occurrence from given start position or -1 if no matches found. After that you can change start position and repeat it again. Then you will not have overlapping problem.
fun countMatches(text: String, template: String): Int {
var cnt = 0
var pos = 0
while (true) {
pos = text.indexOf(template, pos)
if (pos != -1) {
cnt++
pos++
} else {
return cnt
}
}
}
fun countSubstrings(inputName: String, substrings: List<String>): Map<String, Int> {
val mp = substrings.map { it to 0 }.toMap().toMutableMap()
for (line in File(inputName).readLines()) {
for (str in substrings) {
if (str in mp) {
mp[str] = (mp[str] ?: 0) + countMatches(line.toLowerCase(), str.toLowerCase())
}
}
}
return mp
}
But you should know 2 things:
Time complexity if O(n*m) where n and m lengths of such strings.
This is not very elegant solution, probably exists something better. But it works=)
I mean, there is StringUtils.html#countMatches which is part of Apache commons.
StringUtils.countMatches(null, *) = 0
StringUtils.countMatches("", *) = 0
StringUtils.countMatches("abba", null) = 0
StringUtils.countMatches("abba", "") = 0
StringUtils.countMatches("abba", "a") = 2
StringUtils.countMatches("abba", "ab") = 1
StringUtils.countMatches("abba", "xxx") = 0

Why can't I increment global variable

I created a variable q outside of any function. From within my function I am attempting to simply increment it with a ++. Will this increment the global q or is this simply appending the value to a local variable? As you can see in the code sample below I am attempting to use the value of the global variable (which I intend to be updated during each execution of this script) to set a variable which should trigger this function via .change. The function is initially trigger (when q = 1) however it is not trigger when a selection is made from the dropdown box with id = "selectedId2" which is leading me to believe that q has retained a value of 1 though I successfully incremented it when the function was ran prior. Any advise of how I can increment the variable "q" for each iteration of this script would be greatly appreciated.
if (q === 1) {
selectedDiv = '#selectId1';
selectedDiv2 = '#selectId2';
}
if (q === 2) {
selectedDiv = '#selectedId2';
selectedDiv2 = '#selectedId3';
}
if (q === 3) {
selectedDiv = '#selectedId3';
selectedDiv2 = '#selectedId4';
}
if (q === 4) {
selectedDiv = '#selectedId4';
selectedDiv2 = '#selectedId5';
}
if (q === 5) {
selectedDiv = '#selectedId5';
selectedDiv2 = '#selectedId6';
}
$(selectedDiv).change(function () {
if (q == 1) {
var pullDownDivs = '#2';
}
if (q == 2) {
var pullDownDivs = '#3';
}
if (q == 3) {
var pullDownDivs = '#4';
}
if (dropDownSelectJoined != null) {
var dropDownSelectJoined = dropDownSelectJoined + ", " + $(selectedDiv).val();
}
else {
var dropDownSelectJoined = $(selectedDiv).val();
}
var SelArea = $(selectedDiv).val();
if (SelArea != 0) {
var url = '#Url.Action("NetworkSubForm")';
q++;
$.post(url, { RemovedAreaId: $('#RemovedAreaId').val(), selectedNetworkId: $('#SelectedNetworkId').val(), dropDownSelectJoined: dropDownSelectJoined },
function (data) {
var productDropdown = $(selectedDiv2);
productDropdown.empty();
productDropdown.append("<option>-- Select Area --</option>");
for (var i = 0; i < data.length; i++) {
productDropdown.append($('<option></option>').val(data[i].Value).html(data[i].Text));
}
});
$(pullDownDivs).show();
$(pullDownDivs).html();
}
else {
$(pullDownDivs).hide();
$(pullDownDivs).html();
}
});
I don't know what the rest of your code looks like, but you can see this kind of behavior due to "shadowing":
var q = 0; //global "q"
function handler() {
var q = 0; //local "q" that shadows the global "q";
...
...
q++;
console.log(q);
}
Repeatedly calling handler will output 1 each time since you are redefining a local q within handler. However, the outer q remains unchanged. But if you did this:
var q = 0; //global "q"
function handler() {
var q = 0; //local "q" that shadows the global "q";
...
...
window.q++;
console.log(window.q);
}
The global q will be updated since you are explicitly referencing it by doing window.q.

Kinect skeleton Scaling strange behaviour

I am trying to scale a skeleton to match to the sizes of another skeleton.
My algoritm do the following:
Find the distance between two joints of the origin skeleton and the destiny skeleton using phytagorean teorem
divide this two distances to find a multiply factor.
Multiply each joint by this factor.
Here is my actual code:
public static Skeleton ScaleToMatch(this Skeleton skToBeScaled, Skeleton skDestiny)
{
Joint newJoint = new Joint();
double distanciaOrigem = 0;
double distanciaDestino = 0;
double fator = 1;
SkeletonPoint pos = new SkeletonPoint();
foreach (BoneOrientation bo in skToBeScaled.BoneOrientations)
{
distanciaOrigem = FisioKinectCalcs.Distance3DBetweenJoint(skToBeScaled.Joints[bo.StartJoint], skToBeScaled.Joints[bo.EndJoint]);
distanciaDestino = FisioKinectCalcs.Distance3DBetweenJoint(skDestiny.Joints[bo.StartJoint], skDestiny.Joints[bo.EndJoint]);
if (distanciaOrigem > 0 && distanciaDestino > 0)
{
fator = (distanciaDestino / distanciaOrigem);
newJoint = skToBeScaled.Joints[bo.EndJoint]; // escaling only the end joint as the BoneOrientatios starts from HipCenter, i am scaling from center to edges.
// applying the new values to the joint
pos = new SkeletonPoint()
{
X = (float)(newJoint.Position.X * fator),
Y = (float)(newJoint.Position.Y * fator),
Z = (float)(newJoint.Position.Z * fator)
};
newJoint.Position = pos;
skToBeScaled.Joints[bo.EndJoint] = newJoint;
}
}
return skToBeScaled;
}
Every seems to work fine except for the hands and foots
Look at this images
I have my own skeleton over me, and my skeleton scaled to the sizes of another person, but the hands and foots still crazy. (but code looks right)
Any suggestion?
It's hard to say without running the code, but it somewhat "looks good".
What I would validate though, is your
if (distanciaOrigem > 0 && distanciaDestino > 0)
If distanciaOrigem is very close to 0, but even just epsilon away from 0, it won't be picked up by the if, and then
fator = (distanciaDestino / distanciaOrigem);
Will result in a very large number!
I would suggest to smooth the factor so it generally fits the proper scale. Try this code:
private static Dictionary<JointType, double> jointFactors = null;
static CalibrationUtils()
{
InitJointFactors();
}
public static class EnumUtil
{
public static IEnumerable<T> GetValues<T>()
{
return Enum.GetValues(typeof(T)).Cast<T>();
}
}
private static void InitJointFactors()
{
var jointTypes = EnumUtil.GetValues<JointType>();
jointFactors = new Dictionary<JointType, double>();
foreach(JointType type in jointTypes)
{
jointFactors.Add(type, 0);
}
}
private static double SmoothenFactor(JointType jointType, double factor, int weight)
{
double currentValue = jointFactors[jointType];
double newValue = 0;
if(currentValue != 0)
newValue = (weight * currentValue + factor) / (weight + 1);
else
newValue = factor;
jointFactors[jointType] = newValue;
return newValue;
}
When it comes to factor usage just use the SmoothenFactor method first:
public static Skeleton ScaleToMatch(this Skeleton skToBeScaled, Skeleton skDestiny, double additionalFactor = 1)
{
Joint newJoint = new Joint();
double distanceToScale = 0;
double distanceDestiny = 0;
double factor = 1;
int weight = 500;
SkeletonPoint pos = new SkeletonPoint();
Skeleton newSkeleton = null;
KinectHelper.CopySkeleton(skToBeScaled, ref newSkeleton);
SkeletonPoint hipCenterPosition = newSkeleton.Joints[JointType.HipCenter].Position;
foreach(BoneOrientation bo in skToBeScaled.BoneOrientations)
{
distanceToScale = Distance3DBetweenJoints(skToBeScaled.Joints[bo.StartJoint], skToBeScaled.Joints[bo.EndJoint]);
distanceDestiny = Distance3DBetweenJoints(skDestiny.Joints[bo.StartJoint], skDestiny.Joints[bo.EndJoint]);
if(distanceToScale > 0 && distanceDestiny > 0)
{
factor = (distanceDestiny / distanceToScale) * additionalFactor;
newJoint = skToBeScaled.Joints[bo.EndJoint]; // escaling only the end joint as the BoneOrientatios starts from HipCenter, i am scaling from center to edges.
factor = SmoothenFactor(newJoint.JointType, factor, weight);
pos = new SkeletonPoint()
{
X = (float)((newJoint.Position.X - hipCenterPosition.X) * factor + hipCenterPosition.X),
Y = (float)((newJoint.Position.Y - hipCenterPosition.Y) * factor + hipCenterPosition.Y),
Z = (float)((newJoint.Position.Z - hipCenterPosition.Z) * factor + hipCenterPosition.Z)
};
newJoint.Position = pos;
newSkeleton.Joints[bo.EndJoint] = newJoint;
}
}
return newSkeleton;
}
I also modified your ScaleToMatch method as you see. There was a need to move joints in relation to HipCenter position. Also new positions are saved to a new Skeleton instance so they are not used in further vector calculations.
Experiment with the weight but since our bones length is constant you can use big numbers like 100 and more to be sure that wrong Kinect readings do not disturb the correct scale.
Here's an example of how it helped with scaling HandRight joint position:
The weight was set to 500. The resulting factor is supposed to be around 2 (because the base skeleton was purposely downscaled by a factor of 2).
I hope it helps!

A better similarity ranking algorithm for variable length strings

I'm looking for a string similarity algorithm that yields better results on variable length strings than the ones that are usually suggested (levenshtein distance, soundex, etc).
For example,
Given string A: "Robert",
Then string B: "Amy Robertson"
would be a better match than
String C: "Richard"
Also, preferably, this algorithm should be language agnostic (also works in languages other than English).
Simon White of Catalysoft wrote an article about a very clever algorithm that compares adjacent character pairs that works really well for my purposes:
http://www.catalysoft.com/articles/StrikeAMatch.html
Simon has a Java version of the algorithm and below I wrote a PL/Ruby version of it (taken from the plain ruby version done in the related forum entry comment by Mark Wong-VanHaren) so that I can use it in my PostgreSQL queries:
CREATE FUNCTION string_similarity(str1 varchar, str2 varchar)
RETURNS float8 AS '
str1.downcase!
pairs1 = (0..str1.length-2).collect {|i| str1[i,2]}.reject {
|pair| pair.include? " "}
str2.downcase!
pairs2 = (0..str2.length-2).collect {|i| str2[i,2]}.reject {
|pair| pair.include? " "}
union = pairs1.size + pairs2.size
intersection = 0
pairs1.each do |p1|
0.upto(pairs2.size-1) do |i|
if p1 == pairs2[i]
intersection += 1
pairs2.slice!(i)
break
end
end
end
(2.0 * intersection) / union
' LANGUAGE 'plruby';
Works like a charm!
marzagao's answer is great. I converted it to C# so I thought I'd post it here:
Pastebin Link
/// <summary>
/// This class implements string comparison algorithm
/// based on character pair similarity
/// Source: http://www.catalysoft.com/articles/StrikeAMatch.html
/// </summary>
public class SimilarityTool
{
/// <summary>
/// Compares the two strings based on letter pair matches
/// </summary>
/// <param name="str1"></param>
/// <param name="str2"></param>
/// <returns>The percentage match from 0.0 to 1.0 where 1.0 is 100%</returns>
public double CompareStrings(string str1, string str2)
{
List<string> pairs1 = WordLetterPairs(str1.ToUpper());
List<string> pairs2 = WordLetterPairs(str2.ToUpper());
int intersection = 0;
int union = pairs1.Count + pairs2.Count;
for (int i = 0; i < pairs1.Count; i++)
{
for (int j = 0; j < pairs2.Count; j++)
{
if (pairs1[i] == pairs2[j])
{
intersection++;
pairs2.RemoveAt(j);//Must remove the match to prevent "GGGG" from appearing to match "GG" with 100% success
break;
}
}
}
return (2.0 * intersection) / union;
}
/// <summary>
/// Gets all letter pairs for each
/// individual word in the string
/// </summary>
/// <param name="str"></param>
/// <returns></returns>
private List<string> WordLetterPairs(string str)
{
List<string> AllPairs = new List<string>();
// Tokenize the string and put the tokens/words into an array
string[] Words = Regex.Split(str, #"\s");
// For each word
for (int w = 0; w < Words.Length; w++)
{
if (!string.IsNullOrEmpty(Words[w]))
{
// Find the pairs of characters
String[] PairsInWord = LetterPairs(Words[w]);
for (int p = 0; p < PairsInWord.Length; p++)
{
AllPairs.Add(PairsInWord[p]);
}
}
}
return AllPairs;
}
/// <summary>
/// Generates an array containing every
/// two consecutive letters in the input string
/// </summary>
/// <param name="str"></param>
/// <returns></returns>
private string[] LetterPairs(string str)
{
int numPairs = str.Length - 1;
string[] pairs = new string[numPairs];
for (int i = 0; i < numPairs; i++)
{
pairs[i] = str.Substring(i, 2);
}
return pairs;
}
}
Here is another version of marzagao's answer, this one written in Python:
def get_bigrams(string):
"""
Take a string and return a list of bigrams.
"""
s = string.lower()
return [s[i:i+2] for i in list(range(len(s) - 1))]
def string_similarity(str1, str2):
"""
Perform bigram comparison between two strings
and return a percentage match in decimal form.
"""
pairs1 = get_bigrams(str1)
pairs2 = get_bigrams(str2)
union = len(pairs1) + len(pairs2)
hit_count = 0
for x in pairs1:
for y in pairs2:
if x == y:
hit_count += 1
break
return (2.0 * hit_count) / union
if __name__ == "__main__":
"""
Run a test using the example taken from:
http://www.catalysoft.com/articles/StrikeAMatch.html
"""
w1 = 'Healed'
words = ['Heard', 'Healthy', 'Help', 'Herded', 'Sealed', 'Sold']
for w2 in words:
print('Healed --- ' + w2)
print(string_similarity(w1, w2))
print()
A shorter version of John Rutledge's answer:
def get_bigrams(string):
'''
Takes a string and returns a list of bigrams
'''
s = string.lower()
return {s[i:i+2] for i in xrange(len(s) - 1)}
def string_similarity(str1, str2):
'''
Perform bigram comparison between two strings
and return a percentage match in decimal form
'''
pairs1 = get_bigrams(str1)
pairs2 = get_bigrams(str2)
return (2.0 * len(pairs1 & pairs2)) / (len(pairs1) + len(pairs2))
Here's my PHP implementation of suggested StrikeAMatch algorithm, by Simon White. the advantages (like it says in the link) are:
A true reflection of lexical similarity - strings with small differences should be recognised as being similar. In particular, a significant substring overlap should point to a high level of similarity between the strings.
A robustness to changes of word order - two strings which contain the same words, but in a different order, should be recognised as being similar. On the other hand, if one string is just a random anagram of the characters contained in the other, then it should (usually) be recognised as dissimilar.
Language Independence - the algorithm should work not only in English, but in many different languages.
<?php
/**
* LetterPairSimilarity algorithm implementation in PHP
* #author Igal Alkon
* #link http://www.catalysoft.com/articles/StrikeAMatch.html
*/
class LetterPairSimilarity
{
/**
* #param $str
* #return mixed
*/
private function wordLetterPairs($str)
{
$allPairs = array();
// Tokenize the string and put the tokens/words into an array
$words = explode(' ', $str);
// For each word
for ($w = 0; $w < count($words); $w++)
{
// Find the pairs of characters
$pairsInWord = $this->letterPairs($words[$w]);
for ($p = 0; $p < count($pairsInWord); $p++)
{
$allPairs[] = $pairsInWord[$p];
}
}
return $allPairs;
}
/**
* #param $str
* #return array
*/
private function letterPairs($str)
{
$numPairs = mb_strlen($str)-1;
$pairs = array();
for ($i = 0; $i < $numPairs; $i++)
{
$pairs[$i] = mb_substr($str,$i,2);
}
return $pairs;
}
/**
* #param $str1
* #param $str2
* #return float
*/
public function compareStrings($str1, $str2)
{
$pairs1 = $this->wordLetterPairs(strtoupper($str1));
$pairs2 = $this->wordLetterPairs(strtoupper($str2));
$intersection = 0;
$union = count($pairs1) + count($pairs2);
for ($i=0; $i < count($pairs1); $i++)
{
$pair1 = $pairs1[$i];
$pairs2 = array_values($pairs2);
for($j = 0; $j < count($pairs2); $j++)
{
$pair2 = $pairs2[$j];
if ($pair1 === $pair2)
{
$intersection++;
unset($pairs2[$j]);
break;
}
}
}
return (2.0*$intersection)/$union;
}
}
This discussion has been really helpful, thanks. I converted the algorithm to VBA for use with Excel and wrote a few versions of a worksheet function, one for simple comparison of a pair of strings, the other for comparing one string to a range/array of strings. The strSimLookup version returns either the last best match as a string, array index, or similarity metric.
This implementation produces the same results listed in the Amazon example on Simon White's website with a few minor exceptions on low-scoring matches; not sure where the difference creeps in, could be VBA's Split function, but I haven't investigated as it's working fine for my purposes.
'Implements functions to rate how similar two strings are on
'a scale of 0.0 (completely dissimilar) to 1.0 (exactly similar)
'Source:  http://www.catalysoft.com/articles/StrikeAMatch.html
'Author: Bob Chatham, bob.chatham at gmail.com
'9/12/2010
Option Explicit
Public Function stringSimilarity(str1 As String, str2 As String) As Variant
'Simple version of the algorithm that computes the similiarity metric
'between two strings.
'NOTE: This verision is not efficient to use if you're comparing one string
'with a range of other values as it will needlessly calculate the pairs for the
'first string over an over again; use the array-optimized version for this case.
Dim sPairs1 As Collection
Dim sPairs2 As Collection
Set sPairs1 = New Collection
Set sPairs2 = New Collection
WordLetterPairs str1, sPairs1
WordLetterPairs str2, sPairs2
stringSimilarity = SimilarityMetric(sPairs1, sPairs2)
Set sPairs1 = Nothing
Set sPairs2 = Nothing
End Function
Public Function strSimA(str1 As Variant, rRng As Range) As Variant
'Return an array of string similarity indexes for str1 vs every string in input range rRng
Dim sPairs1 As Collection
Dim sPairs2 As Collection
Dim arrOut As Variant
Dim l As Long, j As Long
Set sPairs1 = New Collection
WordLetterPairs CStr(str1), sPairs1
l = rRng.Count
ReDim arrOut(1 To l)
For j = 1 To l
Set sPairs2 = New Collection
WordLetterPairs CStr(rRng(j)), sPairs2
arrOut(j) = SimilarityMetric(sPairs1, sPairs2)
Set sPairs2 = Nothing
Next j
strSimA = Application.Transpose(arrOut)
End Function
Public Function strSimLookup(str1 As Variant, rRng As Range, Optional returnType) As Variant
'Return either the best match or the index of the best match
'depending on returnTYype parameter) between str1 and strings in rRng)
' returnType = 0 or omitted: returns the best matching string
' returnType = 1 : returns the index of the best matching string
' returnType = 2 : returns the similarity metric
Dim sPairs1 As Collection
Dim sPairs2 As Collection
Dim metric, bestMetric As Double
Dim i, iBest As Long
Const RETURN_STRING As Integer = 0
Const RETURN_INDEX As Integer = 1
Const RETURN_METRIC As Integer = 2
If IsMissing(returnType) Then returnType = RETURN_STRING
Set sPairs1 = New Collection
WordLetterPairs CStr(str1), sPairs1
bestMetric = -1
iBest = -1
For i = 1 To rRng.Count
Set sPairs2 = New Collection
WordLetterPairs CStr(rRng(i)), sPairs2
metric = SimilarityMetric(sPairs1, sPairs2)
If metric > bestMetric Then
bestMetric = metric
iBest = i
End If
Set sPairs2 = Nothing
Next i
If iBest = -1 Then
strSimLookup = CVErr(xlErrValue)
Exit Function
End If
Select Case returnType
Case RETURN_STRING
strSimLookup = CStr(rRng(iBest))
Case RETURN_INDEX
strSimLookup = iBest
Case Else
strSimLookup = bestMetric
End Select
End Function
Public Function strSim(str1 As String, str2 As String) As Variant
Dim ilen, iLen1, ilen2 As Integer
iLen1 = Len(str1)
ilen2 = Len(str2)
If iLen1 >= ilen2 Then ilen = ilen2 Else ilen = iLen1
strSim = stringSimilarity(Left(str1, ilen), Left(str2, ilen))
End Function
Sub WordLetterPairs(str As String, pairColl As Collection)
'Tokenize str into words, then add all letter pairs to pairColl
Dim Words() As String
Dim word, nPairs, pair As Integer
Words = Split(str)
If UBound(Words) < 0 Then
Set pairColl = Nothing
Exit Sub
End If
For word = 0 To UBound(Words)
nPairs = Len(Words(word)) - 1
If nPairs > 0 Then
For pair = 1 To nPairs
pairColl.Add Mid(Words(word), pair, 2)
Next pair
End If
Next word
End Sub
Private Function SimilarityMetric(sPairs1 As Collection, sPairs2 As Collection) As Variant
'Helper function to calculate similarity metric given two collections of letter pairs.
'This function is designed to allow the pair collections to be set up separately as needed.
'NOTE: sPairs2 collection will be altered as pairs are removed; copy the collection
'if this is not the desired behavior.
'Also assumes that collections will be deallocated somewhere else
Dim Intersect As Double
Dim Union As Double
Dim i, j As Long
If sPairs1.Count = 0 Or sPairs2.Count = 0 Then
SimilarityMetric = CVErr(xlErrNA)
Exit Function
End If
Union = sPairs1.Count + sPairs2.Count
Intersect = 0
For i = 1 To sPairs1.Count
For j = 1 To sPairs2.Count
If StrComp(sPairs1(i), sPairs2(j)) = 0 Then
Intersect = Intersect + 1
sPairs2.Remove j
Exit For
End If
Next j
Next i
SimilarityMetric = (2 * Intersect) / Union
End Function
I'm sorry, the answer was not invented by the author. This is a well known algorithm that was first present by Digital Equipment Corporation and is often referred to as shingling.
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-TN-1997-015.pdf
I translated Simon White's algorithm to PL/pgSQL. This is my contribution.
<!-- language: lang-sql -->
create or replace function spt1.letterpairs(in p_str varchar)
returns varchar as
$$
declare
v_numpairs integer := length(p_str)-1;
v_pairs varchar[];
begin
for i in 1 .. v_numpairs loop
v_pairs[i] := substr(p_str, i, 2);
end loop;
return v_pairs;
end;
$$ language 'plpgsql';
--===================================================================
create or replace function spt1.wordletterpairs(in p_str varchar)
returns varchar as
$$
declare
v_allpairs varchar[];
v_words varchar[];
v_pairsinword varchar[];
begin
v_words := regexp_split_to_array(p_str, '[[:space:]]');
for i in 1 .. array_length(v_words, 1) loop
v_pairsinword := spt1.letterpairs(v_words[i]);
if v_pairsinword is not null then
for j in 1 .. array_length(v_pairsinword, 1) loop
v_allpairs := v_allpairs || v_pairsinword[j];
end loop;
end if;
end loop;
return v_allpairs;
end;
$$ language 'plpgsql';
--===================================================================
create or replace function spt1.arrayintersect(ANYARRAY, ANYARRAY)
returns anyarray as
$$
select array(select unnest($1) intersect select unnest($2))
$$ language 'sql';
--===================================================================
create or replace function spt1.comparestrings(in p_str1 varchar, in p_str2 varchar)
returns float as
$$
declare
v_pairs1 varchar[];
v_pairs2 varchar[];
v_intersection integer;
v_union integer;
begin
v_pairs1 := wordletterpairs(upper(p_str1));
v_pairs2 := wordletterpairs(upper(p_str2));
v_union := array_length(v_pairs1, 1) + array_length(v_pairs2, 1);
v_intersection := array_length(arrayintersect(v_pairs1, v_pairs2), 1);
return (2.0 * v_intersection / v_union);
end;
$$ language 'plpgsql';
A version in beautiful Scala:
def pairDistance(s1: String, s2: String): Double = {
def strToPairs(s: String, acc: List[String]): List[String] = {
if (s.size < 2) acc
else strToPairs(s.drop(1),
if (s.take(2).contains(" ")) acc else acc ::: List(s.take(2)))
}
val lst1 = strToPairs(s1.toUpperCase, List())
val lst2 = strToPairs(s2.toUpperCase, List())
(2.0 * lst2.intersect(lst1).size) / (lst1.size + lst2.size)
}
String Similarity Metrics contains an overview of many different metrics used in string comparison (Wikipedia has an overview as well). Much of these metrics is implemented in a library simmetrics.
Yet another example of metric, not included in the given overview is for example compression distance (attempting to approximate the Kolmogorov's complexity), which can be used for a bit longer texts than the one you presented.
You might also consider looking at a much broader subject of Natural Language Processing. These R packages can get you started quickly (or at least give some ideas).
And one last edit - search the other questions on this subject at SO, there are quite a few related ones.
A faster PHP version of the algorithm:
/**
*
* #param $str
* #return mixed
*/
private static function wordLetterPairs ($str)
{
$allPairs = array();
// Tokenize the string and put the tokens/words into an array
$words = explode(' ', $str);
// For each word
for ($w = 0; $w < count($words); $w ++) {
// Find the pairs of characters
$pairsInWord = self::letterPairs($words[$w]);
for ($p = 0; $p < count($pairsInWord); $p ++) {
$allPairs[$pairsInWord[$p]] = $pairsInWord[$p];
}
}
return array_values($allPairs);
}
/**
*
* #param $str
* #return array
*/
private static function letterPairs ($str)
{
$numPairs = mb_strlen($str) - 1;
$pairs = array();
for ($i = 0; $i < $numPairs; $i ++) {
$pairs[$i] = mb_substr($str, $i, 2);
}
return $pairs;
}
/**
*
* #param $str1
* #param $str2
* #return float
*/
public static function compareStrings ($str1, $str2)
{
$pairs1 = self::wordLetterPairs(mb_strtolower($str1));
$pairs2 = self::wordLetterPairs(mb_strtolower($str2));
$union = count($pairs1) + count($pairs2);
$intersection = count(array_intersect($pairs1, $pairs2));
return (2.0 * $intersection) / $union;
}
For the data I had (approx 2300 comparisons) I had a running time of 0.58sec with Igal Alkon solution versus 0.35sec with mine.
Posting marzagao's answer in C99, inspired by these algorithms
double dice_match(const char *string1, const char *string2) {
//check fast cases
if (((string1 != NULL) && (string1[0] == '\0')) ||
((string2 != NULL) && (string2[0] == '\0'))) {
return 0;
}
if (string1 == string2) {
return 1;
}
size_t strlen1 = strlen(string1);
size_t strlen2 = strlen(string2);
if (strlen1 < 2 || strlen2 < 2) {
return 0;
}
size_t length1 = strlen1 - 1;
size_t length2 = strlen2 - 1;
double matches = 0;
int i = 0, j = 0;
//get bigrams and compare
while (i < length1 && j < length2) {
char a[3] = {string1[i], string1[i + 1], '\0'};
char b[3] = {string2[j], string2[j + 1], '\0'};
int cmp = strcmpi(a, b);
if (cmp == 0) {
matches += 2;
}
i++;
j++;
}
return matches / (length1 + length2);
}
Some tests based on the original article:
#include <stdio.h>
void article_test1() {
char *string1 = "FRANCE";
char *string2 = "FRENCH";
printf("====%s====\n", __func__);
printf("%2.f%% == 40%%\n", dice_match(string1, string2) * 100);
}
void article_test2() {
printf("====%s====\n", __func__);
char *string = "Healed";
char *ss[] = {"Heard", "Healthy", "Help",
"Herded", "Sealed", "Sold"};
int correct[] = {44, 55, 25, 40, 80, 0};
for (int i = 0; i < 6; ++i) {
printf("%2.f%% == %d%%\n", dice_match(string, ss[i]) * 100, correct[i]);
}
}
void multicase_test() {
char *string1 = "FRaNcE";
char *string2 = "fREnCh";
printf("====%s====\n", __func__);
printf("%2.f%% == 40%%\n", dice_match(string1, string2) * 100);
}
void gg_test() {
char *string1 = "GG";
char *string2 = "GGGGG";
printf("====%s====\n", __func__);
printf("%2.f%% != 100%%\n", dice_match(string1, string2) * 100);
}
int main() {
article_test1();
article_test2();
multicase_test();
gg_test();
return 0;
}
Here is the R version:
get_bigrams <- function(str)
{
lstr = tolower(str)
bigramlst = list()
for(i in 1:(nchar(str)-1))
{
bigramlst[[i]] = substr(str, i, i+1)
}
return(bigramlst)
}
str_similarity <- function(str1, str2)
{
pairs1 = get_bigrams(str1)
pairs2 = get_bigrams(str2)
unionlen = length(pairs1) + length(pairs2)
hit_count = 0
for(x in 1:length(pairs1)){
for(y in 1:length(pairs2)){
if (pairs1[[x]] == pairs2[[y]])
hit_count = hit_count + 1
}
}
return ((2.0 * hit_count) / unionlen)
}
Building on Michael La Voie's awesome C# version, as per the request to make it an extension method, here is what I came up with. The primary benefit of doing it this way is that you can sort a Generic List by the percent match. For example, consider you have a string field named "City" in your object. A user searches for "Chester" and you want to return results in descending order of match. For example, you want literal matches of Chester to show up before Rochester. To do this, add two new properties to your object:
public string SearchText { get; set; }
public double PercentMatch
{
get
{
return City.ToUpper().PercentMatchTo(this.SearchText.ToUpper());
}
}
Then on each object, set the SearchText to what the user searched for. Then you can sort it easily with something like:
zipcodes = zipcodes.OrderByDescending(x => x.PercentMatch);
Here's the slight modification to make it an extension method:
/// <summary>
/// This class implements string comparison algorithm
/// based on character pair similarity
/// Source: http://www.catalysoft.com/articles/StrikeAMatch.html
/// </summary>
public static double PercentMatchTo(this string str1, string str2)
{
List<string> pairs1 = WordLetterPairs(str1.ToUpper());
List<string> pairs2 = WordLetterPairs(str2.ToUpper());
int intersection = 0;
int union = pairs1.Count + pairs2.Count;
for (int i = 0; i < pairs1.Count; i++)
{
for (int j = 0; j < pairs2.Count; j++)
{
if (pairs1[i] == pairs2[j])
{
intersection++;
pairs2.RemoveAt(j);//Must remove the match to prevent "GGGG" from appearing to match "GG" with 100% success
break;
}
}
}
return (2.0 * intersection) / union;
}
/// <summary>
/// Gets all letter pairs for each
/// individual word in the string
/// </summary>
/// <param name="str"></param>
/// <returns></returns>
private static List<string> WordLetterPairs(string str)
{
List<string> AllPairs = new List<string>();
// Tokenize the string and put the tokens/words into an array
string[] Words = Regex.Split(str, #"\s");
// For each word
for (int w = 0; w < Words.Length; w++)
{
if (!string.IsNullOrEmpty(Words[w]))
{
// Find the pairs of characters
String[] PairsInWord = LetterPairs(Words[w]);
for (int p = 0; p < PairsInWord.Length; p++)
{
AllPairs.Add(PairsInWord[p]);
}
}
}
return AllPairs;
}
/// <summary>
/// Generates an array containing every
/// two consecutive letters in the input string
/// </summary>
/// <param name="str"></param>
/// <returns></returns>
private static string[] LetterPairs(string str)
{
int numPairs = str.Length - 1;
string[] pairs = new string[numPairs];
for (int i = 0; i < numPairs; i++)
{
pairs[i] = str.Substring(i, 2);
}
return pairs;
}
My JavaScript implementation takes a string or array of strings, and an optional floor (the default floor is 0.5). If you pass it a string, it will return true or false depending on whether or not the string's similarity score is greater than or equal to the floor. If you pass it an array of strings, it will return an array of those strings whose similarity score is greater than or equal to the floor, sorted by score.
Examples:
'Healed'.fuzzy('Sealed'); // returns true
'Healed'.fuzzy('Help'); // returns false
'Healed'.fuzzy('Help', 0.25); // returns true
'Healed'.fuzzy(['Sold', 'Herded', 'Heard', 'Help', 'Sealed', 'Healthy']);
// returns ["Sealed", "Healthy"]
'Healed'.fuzzy(['Sold', 'Herded', 'Heard', 'Help', 'Sealed', 'Healthy'], 0);
// returns ["Sealed", "Healthy", "Heard", "Herded", "Help", "Sold"]
Here it is:
(function(){
var default_floor = 0.5;
function pairs(str){
var pairs = []
, length = str.length - 1
, pair;
str = str.toLowerCase();
for(var i = 0; i < length; i++){
pair = str.substr(i, 2);
if(!/\s/.test(pair)){
pairs.push(pair);
}
}
return pairs;
}
function similarity(pairs1, pairs2){
var union = pairs1.length + pairs2.length
, hits = 0;
for(var i = 0; i < pairs1.length; i++){
for(var j = 0; j < pairs2.length; j++){
if(pairs1[i] == pairs2[j]){
pairs2.splice(j--, 1);
hits++;
break;
}
}
}
return 2*hits/union || 0;
}
String.prototype.fuzzy = function(strings, floor){
var str1 = this
, pairs1 = pairs(this);
floor = typeof floor == 'number' ? floor : default_floor;
if(typeof(strings) == 'string'){
return str1.length > 1 && strings.length > 1 && similarity(pairs1, pairs(strings)) >= floor || str1.toLowerCase() == strings.toLowerCase();
}else if(strings instanceof Array){
var scores = {};
strings.map(function(str2){
scores[str2] = str1.length > 1 ? similarity(pairs1, pairs(str2)) : 1*(str1.toLowerCase() == str2.toLowerCase());
});
return strings.filter(function(str){
return scores[str] >= floor;
}).sort(function(a, b){
return scores[b] - scores[a];
});
}
};
})();
The Dice coefficient algorithm (Simon White / marzagao's answer) is implemented in Ruby in the
pair_distance_similar method in the amatch gem
https://github.com/flori/amatch
This gem also contains implementations of a number of approximate matching and string comparison algorithms: Levenshtein edit distance, Sellers edit distance, the Hamming distance, the longest common subsequence length, the longest common substring length, the pair distance metric, the Jaro-Winkler metric.
A Haskell version—feel free to suggest edits because I haven't done much Haskell.
import Data.Char
import Data.List
-- Convert a string into words, then get the pairs of words from that phrase
wordLetterPairs :: String -> [String]
wordLetterPairs s1 = concat $ map pairs $ words s1
-- Converts a String into a list of letter pairs.
pairs :: String -> [String]
pairs [] = []
pairs (x:[]) = []
pairs (x:ys) = [x, head ys]:(pairs ys)
-- Calculates the match rating for two strings
matchRating :: String -> String -> Double
matchRating s1 s2 = (numberOfMatches * 2) / totalLength
where pairsS1 = wordLetterPairs $ map toLower s1
pairsS2 = wordLetterPairs $ map toLower s2
numberOfMatches = fromIntegral $ length $ pairsS1 `intersect` pairsS2
totalLength = fromIntegral $ length pairsS1 + length pairsS2
Clojure:
(require '[clojure.set :refer [intersection]])
(defn bigrams [s]
(->> (split s #"\s+")
(mapcat #(partition 2 1 %))
(set)))
(defn string-similarity [a b]
(let [a-pairs (bigrams a)
b-pairs (bigrams b)
total-count (+ (count a-pairs) (count b-pairs))
match-count (count (intersection a-pairs b-pairs))
similarity (/ (* 2 match-count) total-count)]
similarity))
Here is another version of Similarity based in Sørensen–Dice index (marzagao's answer), this one written in C++11:
/*
* Similarity based in Sørensen–Dice index.
*
* Returns the Similarity between _str1 and _str2.
*/
double similarity_sorensen_dice(const std::string& _str1, const std::string& _str2) {
// Base case: if some string is empty.
if (_str1.empty() || _str2.empty()) {
return 1.0;
}
auto str1 = upper_string(_str1);
auto str2 = upper_string(_str2);
// Base case: if the strings are equals.
if (str1 == str2) {
return 0.0;
}
// Base case: if some string does not have bigrams.
if (str1.size() < 2 || str2.size() < 2) {
return 1.0;
}
// Extract bigrams from str1
auto num_pairs1 = str1.size() - 1;
std::unordered_set<std::string> str1_bigrams;
str1_bigrams.reserve(num_pairs1);
for (unsigned i = 0; i < num_pairs1; ++i) {
str1_bigrams.insert(str1.substr(i, 2));
}
// Extract bigrams from str2
auto num_pairs2 = str2.size() - 1;
std::unordered_set<std::string> str2_bigrams;
str2_bigrams.reserve(num_pairs2);
for (unsigned int i = 0; i < num_pairs2; ++i) {
str2_bigrams.insert(str2.substr(i, 2));
}
// Find the intersection between the two sets.
int intersection = 0;
if (str1_bigrams.size() < str2_bigrams.size()) {
const auto it_e = str2_bigrams.end();
for (const auto& bigram : str1_bigrams) {
intersection += str2_bigrams.find(bigram) != it_e;
}
} else {
const auto it_e = str1_bigrams.end();
for (const auto& bigram : str2_bigrams) {
intersection += str1_bigrams.find(bigram) != it_e;
}
}
// Returns similarity coefficient.
return (2.0 * intersection) / (num_pairs1 + num_pairs2);
}
Why not for a JavaScript implementation, I also explained the algorithm.
Algorithm
Input : France and French.
Map them both to their upper case characters (making the algorithm insensitive to case differences), then split them up into their character pairs:
FRANCE: {FR, RA, AN, NC, CE}
FRENCH: {FR, RE, EN, NC, CH}
Find there intersection:
Result:
Implementation
function similarity(s1, s2) {
const
set1 = pairs(s1.toUpperCase()), // [ FR, RA, AN, NC, CE ]
set2 = pairs(s2.toUpperCase()), // [ FR, RE, EN, NC, CH ]
intersection = set1.filter(x => set2.includes(x)); // [ FR, NC ]
// Tips: Instead of `2` multiply by `200`, To get percentage.
return (intersection.length * 2) / (set1.length + set2.length);
}
function pairs(input) {
const tokenized = [];
for (let i = 0; i < input.length - 1; i++)
tokenized.push(input.substring(i, 2 + i));
return tokenized;
}
console.log(similarity("FRANCE", "FRENCH"));
Ranking Results By ( Word - Similarity )
Sealed - 80%
Healthy - 55%
Heard - 44%
Herded - 40%
Help - 25%
Sold - 0%
From same original source.
What about Levenshtein distance, divided by the length of the first string (or alternatively divided my min/max/avg length of both strings)? That has worked for me so far.
Hey guys i gave this a try in javascript, but I'm new to it, anyone know faster ways to do it?
function get_bigrams(string) {
// Takes a string and returns a list of bigrams
var s = string.toLowerCase();
var v = new Array(s.length-1);
for (i = 0; i< v.length; i++){
v[i] =s.slice(i,i+2);
}
return v;
}
function string_similarity(str1, str2){
/*
Perform bigram comparison between two strings
and return a percentage match in decimal form
*/
var pairs1 = get_bigrams(str1);
var pairs2 = get_bigrams(str2);
var union = pairs1.length + pairs2.length;
var hit_count = 0;
for (x in pairs1){
for (y in pairs2){
if (pairs1[x] == pairs2[y]){
hit_count++;
}
}
}
return ((2.0 * hit_count) / union);
}
var w1 = 'Healed';
var word =['Heard','Healthy','Help','Herded','Sealed','Sold']
for (w2 in word){
console.log('Healed --- ' + word[w2])
console.log(string_similarity(w1,word[w2]));
}
I was looking for pure ruby implementation of the algorithm indicated by #marzagao's answer. Unfortunately, link indicated by #marzagao is broken. In #s01ipsist answer, he indicated ruby gem amatch where implementation is not in pure ruby. So I searchd a little and found gem fuzzy_match which has pure ruby implementation (though this gem use amatch) at here. I hope this will help someone like me.
**I've converted marzagao's answer to Java.**
import org.apache.commons.lang3.StringUtils; //Add a apache commons jar in pom.xml
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class SimilarityComparator {
public static void main(String[] args) {
String str0 = "Nischal";
String str1 = "Nischal";
double v = compareStrings(str0, str1);
System.out.println("Similarity betn " + str0 + " and " + str1 + " = " + v);
}
private static double compareStrings(String str1, String str2) {
List<String> pairs1 = wordLetterPairs(str1.toUpperCase());
List<String> pairs2 = wordLetterPairs(str2.toUpperCase());
int intersection = 0;
int union = pairs1.size() + pairs2.size();
for (String s : pairs1) {
for (int j = 0; j < pairs2.size(); j++) {
if (s.equals(pairs2.get(j))) {
intersection++;
pairs2.remove(j);
break;
}
}
}
return (2.0 * intersection) / union;
}
private static List<String> wordLetterPairs(String str) {
List<String> AllPairs = new ArrayList<>();
String[] Words = str.split("\\s");
for (String word : Words) {
if (StringUtils.isNotBlank(word)) {
String[] PairsInWord = letterPairs(word);
Collections.addAll(AllPairs, PairsInWord);
}
}
return AllPairs;
}
private static String[] letterPairs(String str) {
int numPairs = str.length() - 1;
String[] pairs = new String[numPairs];
for (int i = 0; i < numPairs; i++) {
try {
pairs[i] = str.substring(i, i + 2);
} catch (Exception e) {
pairs[i] = str.substring(i, numPairs);
}
}
return pairs;
}
}
Here's another c++ implementation that follows the original article, that minimizes dynamic memory allocations.
It obtains the same matching values in the examples, but I think it's better to take into account also the single character words.
//---------------------------------------------------------------------------
// Similarity based on Sørensen–Dice index
double calc_similarity( const std::string_view s1, const std::string_view s2 )
{
// Check banal cases
if( s1.empty() || s2.empty() )
{// Empty string is never similar to another
return 0.0;
}
else if( s1==s2 )
{// Perfectly equal
return 1.0;
}
else if( s1.length()==1 || s2.length()==1 )
{// Single (not equal) characters have zero similarity
return 0.0;
}
/////////////////////////////////////////////////////////////////////////
// Represents a pair of adjacent characters
class charpair_t final
{
public:
charpair_t(const char a, const char b) noexcept : c1(a), c2(b) {}
[[nodiscard]] bool operator==(const charpair_t& other) const noexcept { return c1==other.c1 && c2==other.c2; }
private:
char c1, c2;
};
/////////////////////////////////////////////////////////////////////////
// Collects and access a sequence of adjacent characters (skipping spaces)
class charpairs_t final
{
public:
charpairs_t(const std::string_view s)
{
assert( !s.empty() );
const std::size_t i_last = s.size()-1;
std::size_t i = 0;
chpairs.reserve(i_last);
while( i<i_last )
{
// Accepting also single-character words (the second is a space)
//if( !std::isspace(s[i]) ) chpairs.emplace_back( std::tolower(s[i]), std::tolower(s[i+1]) );
// Skipping single-character words (as in the original article)
if( std::isspace(s[i]) ) ; // Skip
else if( std::isspace(s[i+1]) ) ++i; // Skip also next
else chpairs.emplace_back( std::tolower(s[i]), std::tolower(s[i+1]) );
++i;
}
}
[[nodiscard]] auto size() const noexcept { return chpairs.size(); }
[[nodiscard]] auto cbegin() const noexcept { return chpairs.cbegin(); }
[[nodiscard]] auto cend() const noexcept { return chpairs.cend(); }
auto erase(std::vector<charpair_t>::const_iterator i) { return chpairs.erase(i); }
private:
std::vector<charpair_t> chpairs;
};
charpairs_t chpairs1{s1},
chpairs2{s2};
const double orig_avg_bigrams_count = 0.5 * static_cast<double>(chpairs1.size() + chpairs2.size());
std::size_t matching_bigrams_count = 0;
for( auto ib1=chpairs1.cbegin(); ib1!=chpairs1.cend(); ++ib1 )
{
for( auto ib2=chpairs2.cbegin(); ib2!=chpairs2.cend(); )
{
if( *ib1==*ib2 )
{
++matching_bigrams_count;
ib2 = chpairs2.erase(ib2); // Avoid to match the same character pair multiple times
break;
}
else ++ib2;
}
}
return static_cast<double>(matching_bigrams_count) / orig_avg_bigrams_count;
}

Resources