How can I save a JAGS model object in R? - r

I am using the package rjags to do MCMC in R and I would like to save the output of the function jags.model for later use in another R session.
Here is a simple example for the mean of a Normal distribution:
library(rjags)
N <- 1000
x <- rnorm(N, 0, 5)
model.str <- 'model {for (i in 1:N) {
x[i] ~ dnorm(mu, 5)}
mu ~ dnorm(0, .0001)}'
jags <- jags.model(textConnection(model.str), data = list(x = x, N = N))
update(jags, 1000)
I can generate samples of mu like this:
coda.samples(model=jags,n.iter=1,variable.names="mu")
# [[1]]
# Markov Chain Monte Carlo (MCMC) output:
# Start = 2001
# End = 2001
# Thinning interval = 1
# mu
# [1,] 0.2312028
#
# attr(,"class")
# [1] "mcmc.list"
Now I would like to save the model object jags for later use in a new R session, so that I don't have to initialize and burn in the Markov Chain again:
save(file="/tmp/jags.Rdata", list="jags")
quit()
However, after starting a new R session and reloading the model I get an error message that the JAGS model must be recompiled:
load("/tmp/jags.Rdata")
coda.samples(model=jags,n.iter=1,variable.names="mu")
# Error in model$iter() : JAGS model must be recompiled
Why is that? How can I save the object jags in R for later use?
Note: The question has been asked before, but the OP was not very specific about the problem.

Maybe I am totally off track regarding what you really want to do, but I would set up a jags model like this, using R2jags instead of rjags (just something like a different wrapper):
library(R2jags)
N <- 1000
x <- rnorm(N, 0, 5)
sink("test.txt")
cat("
model{
for (i in 1:N) {
x[i] ~ dnorm(mu, 5)
}
mu ~ dnorm(0, .0001)
}
",fill = TRUE)
sink()
inits <- function() {
list(
mu = dnorm(1, 0, 0.01))
}
params <- c("mu")
chains <- 3
iter <- 1000
jags1 <- jags(model.file = "test.txt", data = list(x = x, N = N),
parameters.to.save = params, inits = inits,
n.chains = chains, n.iter = iter, n.burnin=floor(iter/2),
n.thin = ifelse(floor(iter/100) < 1, 1, floor(iter/100)))
jags2 <- update(jags1, 10000)
jags2
plot(jags2)
traceplot(jags2)
jags2.mcmc <- as.mcmc(jags2)
There is no difference in the results and I like this procedure because it's much more the way I used winbugs, so...
The last line of code converts the jags2-object to an mcmc-list which can be treated by package coda.
Good luck!
P.S. Here's a second answer:
After looking again on your code, the only thing after loading the jags-object that is missing to get the behavior you want, is:
jags$recompile()
coda.samples(model=jags,n.iter=1,variable.names="mu")
But if you really just want to use the already obtained posterior samples or maybe just want to update the chains for more iterations, you can also use the R2jags-procedure.

Related

Constrain order of parameters in R JAGS

I am puzzled by a simple question in R JAGS. I have for example, 10 parameters: d[1], d[2], ..., d[10]. It is intuitive from the data that they should be increasing. So I want to put a constraint on them.
Here is what I tried to do but it give error messages saying "Node inconsistent with parents":
model{
...
for (j in 1:10){
d.star[j]~dnorm(0,0.0001)
}
d=sort(d.star)
}
Then I tried this:
d[1]~dnorm(0,0.0001)
for (j in 2:10){
d[j]~dnorm(0,0.0001)I(d[j-1],)
}
This worked, but I don't know if this is the correct way to do it. Could you share your thoughts?
Thanks!
If you are ever uncertain about something like this, it is best to just simulate some data to determine if the model structure you suggest works (spoiler alert: it does).
Here is the model that I used:
cat('model{
d[1] ~ dnorm(0, 0.0001) # intercept
d[2] ~ dnorm(0, 0.0001)
for(j in 3:11){
d[j] ~ dnorm(0, 0.0001) I(d[j-1],)
}
for(i in 1:200){
y[i] ~ dnorm(mu[i], tau)
mu[i] <- inprod(d, x[i,])
}
tau ~ dgamma(0.01,0.01)
}',
file = "model_example.R")```
And here are the data I simulated to use with this model.
library(run.jags)
library(mcmcplots)
# intercept with sorted betas
set.seed(161)
betas <- c(1,sort(runif(10, -5,5)))
# make covariates, 1 for intercept
x <- cbind(1,matrix(rnorm(2000), nrow = 200, ncol = 10))
# deterministic part of model
y_det <- x %*% betas
# add noise
y <- rnorm(length(y_det), y_det, 1)
data_list <- list(y = as.numeric(y), x = x)
# fit the model
mout <- run.jags('model_example.R',monitor = c("d", "tau"), data = data_list)
Following this, we can plot out the estimates and overlay the true parameter values
caterplot(mout, "d", reorder = FALSE)
points(rev(c(1:11)) ~ betas, pch = 18,cex = 0.9)
The black points are the true parameter values, the blue points and lines are the estimates. Looks like this set up does fine so long as there are enough data to estimate all of those parameters.
It looks like there is an syntax error in the first implementation. Just try:
model{
...
for (j in 1:10){
d.star[j]~dnorm(0,0.0001)
}
d[1:10] <- sort(d.star) # notice d is indexed.
}
and compare the results with those of the second implementation. According to the documentation, these are both correct, but it is advised to use the function sort.

Winbugs to Rjags beta binomial model translation

I am working through the textbook "Bayesian Ideas and Data Analysis" by Christensen et al.
There is a simple exercise in the book that involves cutting and pasting the following code to run in Winbugs:
model{ y ~ dbin(theta, n) # Model the data
ytilde ~ dbin(theta, m) # Prediction of future binomial
theta ~ dbeta(a, b) # The prior
prob <- step(ytilde - 20) # Pred prob that ytilde >= 20 }
list(n=100, m=100, y=10, a=1, b=1) # The data
list(theta=0.5, ytilde=10) # Starting/initial values
I am trying to translate the following into R2jags code and am running into some trouble. I thought I could fairly directly write my R2Jags code in this fashion:
model {
#Likelihoods
y ~ dbin(theta,n)
yt ~ dbin(theta,m)
#Priors
theta ~ dbeta(a,b)
prob <- step(yt - 20)
}
with the R code:
library(R2jags)
n <- 100
m <- 100
y <- 10
a <- 1
b <- 1
jags.data <- list(n = n,
m = m,
y = y,
a = a,
b = b)
jags.init <- list(
list(theta = 0.5, yt = 10), #Chain 1 init
list(theta = 0.5, yt = 10), #Chain 2 init
list(theta = 0.5, yt = 10) #Chain 3 init
)
jags.param <- c("theta", "yt")
jags.fit <- jags.model(data = jags.data,
inits = jags.inits,
parameters.to.save = jags.param,
model.file = "hw21.bug",
n.chains = 3,
n.iter = 5000,
n.burnin = 100)
print(jags.fit)
However, calling the R code brings about the following error:
Error in jags.model(data = jags.data, inits = jags.inits, parameters.to.save = jags.param, :
unused arguments (parameters.to.save = jags.param, model.file = "hw21.bug", n.iter = 5000, n.burnin = 100)
Is it because I am missing a necessary for loop in my R2Jags model code?
The error is coming from the R function jags.model (not from JAGS) - you are trying to use arguments parameters.to.save etc to the wrong function.
If you want to keep the model as similar to WinBUGS as possible, there is an easier way than specifying the data and initial values in R. Put the following into a text file called 'model.txt' in your working directory:
model{
y ~ dbin(theta, n) # Model the data
ytilde ~ dbin(theta, m) # Prediction of future binomial
theta ~ dbeta(a, b) # The prior
prob <- step(ytilde - 20) # Pred prob that ytilde >= 20
}
data{
list(n=100, m=100, y=10, a=1, b=1) # The data
}
inits{
list(theta=0.5, ytilde=10) # Starting/initial values
}
And then run this in R:
library('runjags')
results <- run.jags('model.txt', monitor='theta')
results
plot(results)
For more information on this method of translating WinBUGS models to JAGS see:
http://runjags.sourceforge.net/quickjags.html
Matt
This old blog post has an extensive example of converting BUGS to JAGS accessed via package rjags not R2jags. (I like the package runjags even better.) I know we're supposed to present self-contained answers here, not just links, but the post is rather long. It goes through each logical step of a script, including:
loading the package
specifying the model
assembling the data
initializing the chains
running the chains
examining the results

Data file seemingly too large with wine and openBUGS

I have recently started trying to do some bayesian modelling with OpenBUGS and R using R2OpenBUGS.
I followed a great link for installing wine and OpenBUGS by David Eagles and the schools example posted there worked fine.
I then tried to run some code I had and kept getting an error after the the model is syntactically correct telling me the data was not loading properly.
After a few days of troubleshooting this it seems that when the datafile is above a certain length the top bit (where you traditionally highlight list in OpenBUGS to load data) is lost and the data cannot be loaded by OpenBUGS.
A screenshot of my OpenBUGS program with the loaded data where the list section has been cut off
This picture shows that at the top of my data.txt file there is no longer a list{ which is basically stopping all of my attempts to run the model.
To confirm this I have ran the example of a simple linear regression where I set the number of points to 1000 and then to 100:
# Load in paths for running OpenBUGS through wine
source("/Users/dp323/Desktop/R/scripts/Where_is_my_OpenBUGS.R")
# set up model
linemodel <- function() {
for (j in 1:N) {
Y[j] ~ dnorm(mu[j], tau) ## Response values Y are Normally distributed
mu[j] <- alpha + beta * (x[j] - xbar) ## linear model with x values centred
}
## Priors
alpha ~ dnorm(0, 0.001)
beta ~ dnorm(0, 0.001)
tau ~ dgamma(0.001, 0.001)
sigma <- 1/sqrt(tau)
}
# set up data ####
linedata <- list(Y = c(1:100), x = c(1:100), N = 100, xbar = 3)
# set initial values ####
lineinits <- function() {
list(alpha = 1, beta = 1, tau = 1)
}
# run bugs ####
lineout <- bugs(data = linedata, inits = lineinits, parameters.to.save = c("alpha", "beta", "sigma"), model.file = linemodel, n.chains = 1, n.iter = 10000, OpenBUGS.pgm = OpenBUGS.pgm, WINE = WINE, WINEPATH = WINEPATH, useWINE = T, debug = T)
The model runs great when linedata <- list(Y = c(1:100), x = c(1:100), N = 100, xbar = 3) but falls apart at the loading in data stage when linedata <- list(Y = c(1:1000), x = c(1:1000), N = 1000, xbar = 3).
I have exhausted a google search of limits of data file size on wine and OpenBUGS and not found anything helpful.
Anyone have any suggestions of what to try/where to start/experience of this before?

error message JAGS subset out of range

I am attempting to call the following jags model in R:
model{
# Main model level 1
for (i in 1:N){
ficon[i] ~ dnorm(mu[i], tau)
mu[i] <- alpha[country[i]]
}
# Priors level 1
tau ~ dgamma(.1,.1)
# Main model level 2
for (j in 1:J){
alpha[j] ~ dnorm(mu.alpha, tau.alpha)
}
# Priors level 2
mu.alpha ~ dnorm(0,.01)
tau.alpha ~ dgamma(.1,.1)
sigma.1 <- 1/(tau)
sigma.2 <- 1/(tau.alpha)
ICC <- sigma.2 / (sigma.1+sigma.2)
}
This is a hierarchical model, where ficon is a continuous variable 0-60, that may have a different mean or distribution by country. N = number of total observations (2244) and J = number of countries (34). When I run this model, I keep getting the following error message:
Compilation error on line 5.
Subset out of range: alpha[35]
This code worked earlier, but it's not working now. I assume the problem is that there are only 34 countries, and that's why it's getting stuck at i=35, but I'm not sure how to solve the problem. Any advice you have is welcome!
The R code that I use to call the model:
### input files JAGS ###
data <- list(ficon = X$ficon, country = X$country, J = 34, N = 2244)
inits1 <- list(alpha = rep(0, 34), mu.alpha = 0, tau = 1, tau.alpha = 1)
inits2 <- list(alpha = rep(1, 34), mu.alpha = 1, tau = .5, tau.alpha = .5)
inits <- list(inits1, inits2)
# call empty model
eqlsempty <- jags(data, inits, model.file = "eqls_emptymodel.R",
parameters = c("mu.alpha", "sigma.1", "sigma.2", "ICC"),
n.chains = 2, n.iter = itt, n.burnin = bi, n.thin = 10)
To solve the problem you need to renumber your countries so they only have the values 1 to 34. If you only have 34 countries and yet you are getting the error message you state then one of the countries must have the value 35. To solve this one could call the following R code before bundling the data:
x$country <- factor(x$country)
x$country <- droplevels(x$country)
x$country <- as.integer(x$country)
Hope this helps

Automation of WinBUGS from R

I have a question related to the R Code which calls BUGS. I have run the model in WinBUGS and it runs fine giving me the expected results. Below is the automation code used when I had single outcome or univariate data for Y’s. Now I want to use it for multiple outcomes. I tried a different way of reading the data. There are 2 simulations for testing which are read from csv files.Not sure where to specify in the code so that the same process can be repeated for 2 outcomes instead of one.
setwd("C://Tina/USB_Backup_042213/Testing/CSV")
matrix=NULL
csvs <- paste("MVN", 1:2, ".csv", sep="")
for(i in 1:length(csvs)){
matrix[[i]] <- read.csv(file=csvs[i], header=T)
print(matrix[[i]])
}
Y1 Y2
1 11 6
2 8 5
3 25 13
4 1 13
5 8 22
Y1 Y2
1 9 1
2 7 9
3 25 13
4 1 18
5 9 12
library("R2WinBUGS")
bugs.output <- list()
for(sim in 1:2){
Y <-(matrix[[sim]])
bugs.output[sim] <- bugs(
data=list(Y=as.matrix(Y), Nf=5, n=60, mn=c(-1.59, -2.44), prec=matrix(c(.0001,0,0,.0001),nrow=2,ncol=2), R=matrix(c(.001,0,0,.001),nrow=2,ncol=2)),
inits=list(list(gamma=c(0,0), T=matrix(c(0.9,0,0,0.9),nrow=2,ncol=2))),
model.file="M-LN_model_trial.txt",
parameters.to.save = c("p","rho","sigma2"),
n.chains=1, n.iter=12000, n.burnin=5000, debug=TRUE,
bugs.directory="C://Tina/USB_Backup_042213/winbugs14/WinBUGS14",
working.directory=NULL)
}
Warning messages:
1: In bugs.output[sim] <- bugs(data = list(Y = as.matrix(Y), Nf = 5, :
number of items to replace is not a multiple of replacement length
2: In bugs.output[sim] <- bugs(data = list(Y = as.matrix(Y), Nf = 5, :
number of items to replace is not a multiple of replacement length
When you get error running your BUGS model from R, one option is to try a mock run of the model in OpenBUGS or WinBUGS itself. It can help you (via the cursor placement after you hit check model button) to locate problematic lines.
I did this with your BUGS model. I found problems in the definition of mn, prec and R in the BUGS model. You can drop these as they are already defined in the data (which, looks like the appropriate place to define them). Once I dropped these from your BUGS model everything ran fine.
Note, to run a model in OpenBUGS you have to edit the format of your data, for example the script I ran was:
model{
#likelihood
for(j in 1 : Nf){
p1[j, 1:2 ] ~ dmnorm(gamma[1:2], T[1:2 ,1:2])
for (i in 1:2){
logit(p[j,i]) <- p1[j,i]
Y[j,i] ~ dbin(p[j,i],n)
}
}
#priors
gamma[1:2] ~ dmnorm(mn[1:2],prec[1:2 ,1:2])
expit[1] <- exp(gamma[1])/(1+exp(gamma[1]))
expit[2] <- exp(gamma[2])/(1+exp(gamma[2]))
T[1:2 ,1:2] ~ dwish(R[1:2 ,1:2], 2)
sigma2[1:2, 1:2] <- inverse(T[,])
rho <- sigma2[1,2]/sqrt(sigma2[1,1]*sigma2[2,2])
}
#data
list(Y=structure(.Data=c(1,11,6,1,8,5,1,25,13,1,1,13,1,8,22),.Dim=c(5,3)),
Nf=5, n=60, mn=c(-1.59,-2.44),
prec=structure(.Data=c(0.0001,0,0,0.0001),.Dim=c(2,2)),
R=structure(.Data=c(0.001,0,0,0.001),.Dim=c(2,2)))
#inits
list(gamma=c(0,0), T=structure(.Data=c(0.9,0,0,0.9),.Dim=c(2,2)))
where the data and inits need a bit work to convert from your R script.
A couple of other points: 1) I am not sure you have the right format for Y as it has 3 columns, your distribution only considers the first two (X and Y1). 2) you had an unnecessary set of curly brackets in the likelihood.
To run the code in BUGS via R you can use the following R syntax...
#BUGS code as a character string
bugs1<-
"model{
#likelihood
for(j in 1 : Nf){
p1[j, 1:2 ] ~ dmnorm(gamma[1:2], T[1:2 ,1:2])
for (i in 1:2){
logit(p[j,i]) <- p1[j,i]
Y[j,i] ~ dbin(p[j,i],n)
}
}
#priors
gamma[1:2] ~ dmnorm(mn[1:2],prec[1:2 ,1:2])
expit[1] <- exp(gamma[1])/(1+exp(gamma[1]))
expit[2] <- exp(gamma[2])/(1+exp(gamma[2]))
T[1:2 ,1:2] ~ dwish(R[1:2 ,1:2], 2)
sigma2[1:2, 1:2] <- inverse(T[,])
rho <- sigma2[1,2]/sqrt(sigma2[1,1]*sigma2[2,2])
}"
#write the BUGS code to a txt file in current working directory
writeLines(bugs1, "bugs1.txt")
#create data
Y<-data.frame(X=1,Y1=c(11,8,25,1,8),Y2=c(6,5,13,13,22))
#run BUGS from R
library("R2OpenBUGS")
mcmc1 <- bugs(data = list(Y=as.matrix(Y), Nf=5, n=60, mn=c(-1.59, -2.44),
prec=matrix(c(.0001,0,0,.0001),nrow=2,ncol=2),
R=matrix(c(.001,0,0,.001),nrow=2,ncol=2)),
inits = list(list(gamma=c(0,0), T=matrix(c(0.9,0,0,0.9),nrow=2,ncol=2))),
param = c("gamma", "sigma2"),
model = "bugs1.txt",
n.iter = 11000, n.burnin = 1000, n.chains = 1)
A couple of points to note here. 1) This uses OpenBUGS not WinBUGS. 2) If you use R2WinBUGS you might hit a trap if you are not running R (or Rstudio, or whatever you are using) as an administrator.
To run the above code a 1000 times you could put it within a loop, something like....
#create and write the BUGS code to a txt file in current working directory (outside the loop)
bugs1<-...
#loop
for(i in 1:1000){
Y <- read.csv(file=paste0("MVN",i,".csv"))
#run BUGS from R
library("R2OpenBUGS")
mcmc1 <- bugs(data = list(Y=as.matrix(Y), Nf=5, n=60, mn=c(-1.59, -2.44),
prec=matrix(c(.0001,0,0,.0001),nrow=2,ncol=2),
R=matrix(c(.001,0,0,.001),nrow=2,ncol=2)),
inits = list(list(gamma=c(0,0), T=matrix(c(0.9,0,0,0.9),nrow=2,ncol=2))),
param = c("gamma", "sigma2"),
model = "bugs1.txt",
n.iter = 11000, n.burnin = 1000, n.chains = 1)
#save mcmc
write.csv(mcmc1$sims.matrix,paste0("mcmc",i,".csv"))
}

Resources