Howto implement the inverse Laplace transform in javascript? - math

I'm writing an javascript applet make it easy for others to see how a system with and without proportional controller works and what the outputs are.
First a little explanation on the applet (You can skip this if you want, the real question is in the last paragraph.):
I managed to implement a way of input for the system (in the frequency domain), so the applet can do the math and show the users their provided system. At the moment the applet computes the poles and zeros of the system, plots them together with the root-Loci, plot the Nyquist curve of the system and plot the Bode plots of the system.
The next thing I want the applet to do is calculating and plotting the impulse response. To do so I need to perform an inverse Laplace transformation on the transferfunction of the system.
Now the real question:
I have a function (the transferfunction) in the frequency domain. The function is a rational function, stored in the program as two polynomes (numerator and denominator stored by their coefficients). What would be the best way of transforming this function to the time domain? (inverse Laplace). Or is there an open-source library which implements this already. I've searched for it already but only found some math libraries for with more simple mathematics.
Thanks in advance

This is a fairly complex and interesting problem. A couple of ideas.
(1) If the solution must be strictly JS: the inverse LT of some rational functions can be found via partial fraction decomposition. You have numerical coefficients for the polynomials, right? You can try implementing a partial fraction decomposition in JS or maybe find one. The difficulty here is that it is not guaranteed that you can find the inverse LT via partial fractions.
(2) Use JS as glue code and send the rational function to another process (running e.g. Sympy or Maxima) to compute the inverse LT. That way you can take advantage of all the functions available, but it will take some work to connect to the other process and parse the result. For Maxima at least, there have been many projects which use Maxima as the computational back-end; see: http://maxima.sourceforge.net/relatedprojects.html

Problem is solved now. After checking out some numerical methods I went for the partial fraction decomposition by using the poles of the system and the least square method to calculate the coeficients. After this the inverse LT wasn't that hard to find.
Thx for your suggestions ;)
Ask me if you want to look at the code.

Related

Understanding the complex-step in a physical sense

I think I understand what complex step is doing numerically/algorithmically.
But the questions still linger. First two questions might have the same answer.
1- I replaced the partial derivative calculations of 'Betz_limit' example with complex step and removed the analytical gradients. Looking at the recorded design_var evolution none of the values are complex? Aren't they supposed to be shown as somehow a+bi?
Or it always steps in the real space. ?
2- Tying to picture 'cs', used in a physical concept. For example a design variable of beam length (m), objective of mass (kg) and a constraint of loads (Nm). I could be using an explicit component to calculate these (pure python) or an external code component (pure fortran). Numerically they all can handle complex numbers but obviously the mass is a real value. So when we say capable of handling the complex numbers is it just an issue of handling a+bi (where actual mass is always 'a' and b is always equal to 0?)
3- How about the step size. I understand there wont be any subtractive cancellation errors but what if i have a design variable normalized/scaled to 1 and a range of 0.8 to 1.2. Decreasing the step to 1e-10 does not make sense. I am a bit confused there.
The ability to use complex arithmetic to compute derivative approximations is based on the mathematics of complex arithmetic.
You should read about the theory to get a better understanding of why it works and how the step size issue is resolved with complex-step vs finite-difference.
There is no physical interpretation that you can make for the complex-step method. You are simply taking advantage of the mathematical properties of complex arithmetic to approximate a derivative in a more accurate manner than FD can. So the key is that your code is set up to do complex-arithmetic correctly.
Sometimes, engineering analyses do actually leverage complex numbers. One aerospace example of this is the Jukowski Transformation. In electrical engineering, complex numbers come up all the time for load-flow analysis of ac circuits. If you have such an analysis, then you can not easily use complex-step to approximate derivatives since the analysis itself is already complex. In these cases, it is technically possible to use a more general class of numbers called hyper dual numbers, but this is not supported in OpenMDAO. So if you had an analysis like this you could not use complex-step.
Also, occationally there are implementations of methods that are not complex-step safe which will prevent you from using it unless you define a new complex-step safe version. The simplest example of this is the np.absolute() method in the numpy library for python. The implementation of this, when passed a complex number, will return the asolute magnitude of the number:
abs(a+bj) = sqrt(1^2 + 1^2) = 1.4142
While not mathematically incorrect, this implementation would mess up the complex-step derivative approximation.
Instead you need an alternate version that gives:
abs(a+bj) = abs(a) + abs(b)*j
So in summary, you need to watch out for these kinds of functions that are not implemented correctly for use with complex-step. If you have those functions, you need to use alternate complex-step safe versions of them. Also, if your analysis itself uses complex numbers then you can not use complex-step derivative approximations either.
With regard to your step size question, again I refer you to the this paper for greater detail. The basic idea is that without subtractive cancellation you are free to use a very small step size with complex-step without the fear of lost accuracy due to numerical issues. So typically you will use 1e-20 smaller as the step. Since complex-step accuracy scalea with the order of step^2, using such a small step gives effectively exact results. You need not worry about scaling issues in most cases, if you just take a small enough step.

How can I do blind fitting on a list of x, y value pairs if I don't know the form of f(x) = y?

If I have a function f(x) = y that I don't know the form of, and if I have a long list of x and y value pairs (potentially thousands of them), is there a program/package/library that will generate potential forms of f(x)?
Obviously there's a lot of ambiguity to the possible forms of any f(x), so something that produces many non-trivial unique answers (in reduced terms) would be ideal, but something that could produce at least one answer would also be good.
If x and y are derived from observational data (i.e. experimental results), are there programs that can create approximate forms of f(x)? On the other hand, if you know beforehand that there is a completely deterministic relationship between x and y (as in the input and output of a pseudo random number generator) are there programs than can create exact forms of f(x)?
Soooo, I found the answer to my own question. Cornell has released a piece of software for doing exactly this kind of blind fitting called Eureqa. It has to be one of the most polished pieces of software that I've ever seen come out of an academic lab. It's seriously pretty nifty. Check it out:
It's even got turnkey integration with Amazon's ec2 clusters, so you can offload some of the heavy computational lifting from your local computer onto the cloud at the push of a button for a very reasonable fee.
I think that I'm going to have to learn more about GUI programming so that I can steal its interface.
(This is more of a numerical methods question.) If there is some kind of observable pattern (you can kinda see the function), then yes, there are several ways you can approximate the original function, but they'll be just that, approximations.
What you want to do is called interpolation. Two very simple (and not very good) methods are Newton's method and Laplace's method of interpolation. They both work on the same principle but they are implemented differently (Laplace's is iterative, Newton's is recursive, for one).
If there's not much going on between any two of your data points (ie, the actual function doesn't have any "bumps" whose "peaks" are not represented by one of your data points), then the spline method of interpolation is one of the best choices you can make. It's a bit harder to implement, but it produces nice results.
Edit: Sometimes, depending on your specific problem, these methods above might be overkill. Sometimes, you'll find that linear interpolation (where you just connect points with straight lines) is a perfectly good solution to your problem.
It depends.
If you're using data acquired from the real-world, then statistical regression techniques can provide you with some tools to evaluate the best fit; if you have several hypothesis for the form of the function, you can use statistical regression to discover the "best" fit, though you may need to be careful about over-fitting a curve -- sometimes the best fit (highest correlation) for a specific dataset completely fails to work for future observations.
If, on the other hand, the data was generated something synthetically (say, you know they were generated by a polynomial), then you can use polynomial curve fitting methods that will give you the exact answer you need.
Yes, there are such things.
If you plot the values and see that there's some functional relationship that makes sense, you can use least squares fitting to calculate the parameter values that minimize the error.
If you don't know what the function should look like, you can use simple spline or interpolation schemes.
You can also use software to guess what the function should be. Maybe something like Maxima can help.
Wolfram Alpha can help you guess:
http://blog.wolframalpha.com/2011/05/17/plotting-functions-and-graphs-in-wolframalpha/
Polynomial Interpolation is the way to go if you have a totally random set
http://en.wikipedia.org/wiki/Polynomial_interpolation
If your set is nearly linear, then regression will give you a good approximation.
Creating exact form from the X's and Y's is mostly impossible.
Notice that what you are trying to achieve is at the heart of many Machine Learning algorithm and therefor you might find what you are looking for on some specialized libraries.
A list of x/y values N items long can always be generated by an degree-N polynomial (assuming no x values are the same). See this article for more details:
http://en.wikipedia.org/wiki/Polynomial_interpolation
Some lists may also match other function types, such as exponential, sinusoidal, and many others. It is impossible to find the 'simplest' matching function, but the best you can do is go through a list of common ones like exponential, sinusoidal, etc. and if none of them match, interpolate the polynomial.
I'm not aware of any software that can do this for you, though.

Calculating ballistic trajectory with changing conditions during flight

There is a good compilation of trajectory math in wikipedia.
But I need to calculate a trajectory that has non uniform conditions. E.g. the wind speed changes above certain altitude. (Cannot be modeled easily.)
Should I calculate projectile's velocity vector e.g. every second and then for the next second based on that (having small enough tdelta)
Or should I try to split the trajectory into pieces - based on the parameters (e.g. wind is vwind 1 between y1 and y2 so I calculate for y<y1, y1≤y<y2 and y2≤y separately).
Try to build and solve a symbolic equation - run time - with all the parameters modeled. (Is this completely utopistic? Traditional programmin languages aren't too good solving symbols.)
Something completely different... ?
Are there good languages / frameworks for handling symbolic math?
I'd suggest an "improved" first approach: solve the differential equations of motion numerically with e.g. the classic Runge-Kutta method.
The nice part is that with these algorithms, once you correctly set up your framework, you just have to write an "evaluate" function for the motion law (which can be almost anything - you don't need to restrict to particular forces), and everything should work fine (as far as the integration step is adequate).
If the conditions really are cleanly divided into two domains like that, then the second approach is probably best. The first approach is both imprecise and overkill, and the third, if done right, will wind up being equivalent to the second.

parabolic partial differential equations

My application has some parabolic partial differential equations...which are inter-related and use some variables which the user inputs via a UI from a desktop application.
Can you guide me through as to which software or library or a particular language would serve the best purpose for the above?
Maybe Python language with:
PyQt for UI
SciPy for scientific computing
Or Matlab, or its free counterpart gnu octave or scilab, of freemat.
Or just crank it up in Wolfram Alpha web UI.
http://www.wolframalpha.com/input/?i=X^2%2B2x%2B1%3D0
Or Wolfram Mathematica 8.
Since you said "equations", I'll assume there's more than one and that they're coupled. It's highly unlikely that you'll find a closed-form solution for a problem that difficult.
When I hear "parabolic PDE", the prototype for me is transient diffusion. That usually means a numerical integration forward in time using explicit Euler (small steps, unstable), implicit, or Crank-Nicholson integration scheme.
I'd discretize using finite element methods and weighted residuals. This is how you turn those PDEs into matrix equations.
Once both of those are decided upon, you'll have a set of linear algebra problems to solve repeatedly for each time step. You can use any good linear algebra library you have available in the language of your choice.
Maybe MATLAB or Octave, its open source cousin, could help you here.

Which particular software development tasks have you used math for? And which branch of math did you use?

I'm not looking for a general discussion on if math is important or not for programming.
Instead I'm looking for real world scenarios where you have actually used some branch of math to solve some particular problem during your career as a software developer.
In particular, I'm looking for concrete examples.
I frequently find myself using De Morgan's theorem when as well as general Boolean algebra when trying to simplify conditionals
I've also occasionally written out truth tables to verify changes, as in the example below (found during a recent code review)
(showAll and s.ShowToUser are both of type bool.)
// Before
(showAll ? (s.ShowToUser || s.ShowToUser == false) : s.ShowToUser)
// After!
showAll || s.ShowToUser
I also used some basic right-angle trigonometry a few years ago when working on some simple graphics - I had to rotate and centre a text string along a line that could be at any angle.
Not revolutionary...but certainly maths.
Linear algebra for 3D rendering and also for financial tools.
Regression analysis for the same financial tools, like correlations between financial instruments and indices, and such.
Statistics, I had to write several methods to get statistical values, like the F Probability Distribution, the Pearson product moment coeficient, and some Linear Algebra correlations, interpolations and extrapolations for implementing the Arbitrage pricing theory for asset pricing and stocks.
Discrete math for everything, linear algebra for 3D, analysis for physics especially for calculating mass properties.
[Linear algebra for everything]
Projective geometry for camera calibration
Identification of time series / statistical filtering for sound & image processing
(I guess) basic mechanics and hence calculus for game programming
Computing sizes of caches to optimize performance. Not as simple as it sounds when this is your critical path, and you have to go back and work out the times saved by using the cache relative to its size.
I'm in medical imaging, and I use mostly linear algebra and basic geometry for anything related to 3D display, anatomical measurements, etc...
I also use numerical analysis for handling real-world noisy data, and a good deal of statistics to prove algorithms, design support tools for clinical trials, etc...
Games with trigonometry and AI with graph theory in my case.
Graph theory to create a weighted graph to represent all possible paths between two points and then find the shortest or most efficient path.
Also statistics for plotting graphs and risk calculations. I used both Normal distribution and cumulative normal distribution calculations. Pretty commonly used functions in Excel I would guess but I actully had to write them myself since there is no built-in support in the .NET libraries. Sadly the built in Math support in .NET seem pretty basic.
I've used trigonometry the most and also a small amount a calculus, working on overlays for GIS (mapping) software, comparing objects in 3D space, and converting between coordinate systems.
A general mathematical understanding is very useful if you're using 3rd party libraries to do calculations for you, as you ofter need to appreciate their limitations.
i often use math and programming together, but the goal of my work IS the math so use software to achive that.
as for the math i use; mostly Calculus (FFT's analysing continuous and discrete signals) with a slash of linar algebra (CORDIC) to do trig on a MCU with no floating point chip.
I used a analytic geometry for simple 3d engine in opengl in hobby project on high school.
Some geometry computation i had used for dynamic printing reports, where was another 90° angle layout than.
A year ago I used some derivatives and integrals for store analysis (product item movement in store).
Bot all the computation can be found on internet or high-school book.
Statistics mean, standard-deviation, for our analysts.
Linear algebra - particularly gauss-jordan elimination and
Calculus - derivatives in the form of difference tables for generating polynomials from a table of (x, f(x))
Linear algebra and complex analysis in electronic engineering.
Statistics in analysing data and translating it into other units (different project).
I used probability and log odds (log of the ratio of two probabilities) to classify incoming emails into multiple categories. Most of the heavy lifting was done by my colleague Fidelis Assis.
Real world scenarios: better rostering of staff, more efficient scheduling of flights, shortest paths in road networks, optimal facility/resource locations.
Branch of maths: Operations Research. Vague definition: construct a mathematical model of a (normally complex) real world business problem, and then use mathematical tools (e.g. optimisation, statistics/probability, queuing theory, graph theory) to interrogate this model to aid in the making of effective decisions (e.g. minimise cost, maximise efficency, predict outcomes etc).
Statistics for scientific data analyses such as:
calculation of distributions, z-standardisation
Fishers Z
Reliability (Alpha, Kappa, Cohen)
Discriminance analyses
scale aggregation, poling, etc.
In actual software development I've only really used quite trivial linear algebra, geometry and trigonometry. Certainly nothing more advanced than the first college course in each subject.
I have however written lots of programs to solve really quite hard math problems, using some very advanced math. But I wouldn't call any of that software development since I wasn't actually developing software. By that I mean that the end result wasn't the program itself, it was an answer. Basically someone would ask me what is essentially a math question and I'd write a program that answered that question. Sure I’d keep the code around for when I get asked the question again, and sometimes I’d send the code to someone so that they could answer the question themselves, but that still doesn’t count as software development in my mind. Occasionally someone would take that code and re-implement it in an application, but then they're the ones doing the software development and I'm the one doing the math.
(Hopefully this new job I’ve started will actually let me to both, so we’ll see how that works out)

Resources