I am making boxplots with ggplot with data that is classified by 2 factor variables. I'd like to have the box sizes reflect sample size via varwidth = TRUE but when I do this the boxes overlap.
1) Some sample data with a 3 x 2 structure
data <- data.frame(group1= sample(c("A","B","C"),100, replace = TRUE),group2= sample(c("D","E"),100, replace = TRUE) ,response = rnorm(100, mean = 0, sd = 1))
2) Default boxplots: ggplot without variable width
ggplot(data = data, aes(y = response, x = group1, color = group2)) + geom_boxplot()
I like how the first level of grouping is shown.
Now I try to add variable widths...
3) ...and What I get when varwidth = TRUE
ggplot(data = data, aes(y = response, x = group1, color = group2)) + geom_boxplot(varwidth = T)
This overlap seems to occur whether I use color = group2 or group = group2 in both the main call to ggplot and in the geom_boxplot statement. Fussing with position_dodge doesn't seem to help either.
4) A solution I don't like visually is to make unique factors by combining my group1 and group2
data$grp.comb <- paste(data$group1, data$group2)
ggplot(data = data, aes(y = response, x = grp.comb, color = group2)) + geom_boxplot()
I prefer having things grouped to reflect the cross classification
5) The way forward:
I'd like to either a)figure out how to either make varwidth = TRUE not cause the boxes to overlap or b)manually adjusted the space between the combined groups so that boxes within the 1st level of grouping are closer together.
I think your problem can be solved best by using facet_wrap.
library(ggplot2)
data <- data.frame(group1= sample(c("A","B","C"),100, replace = TRUE), group2=
sample(c("D","E"),100, replace = TRUE) ,response = rnorm(100, mean = 0, sd = 1))
ggplot(data = data, aes(y = response, x = group2, color = group2)) +
geom_boxplot(varwidth = TRUE) +
facet_wrap(~group1)
Which gives:
A recent update to ggplot2 makes it so that the code provided by #N Brouwer in (3) works as expected:
# library(devtools)
# install_github("tidyverse/ggplot2")
packageVersion("ggplot2") # works with v2.2.1.9000
library(ggplot2)
set.seed(1234)
data <- data.frame(group1= sample(c("A","B","C"), 100, replace = TRUE),
group2= sample(c("D","E"), 100, replace = TRUE),
response = rnorm(100, mean = 0, sd = 1))
ggplot(data = data, aes(y = response, x = group1, color = group2)) +
geom_boxplot(varwidth = T)
(I'm a new user and can't post images inline)
fig 1
This question has been answered here ggplot increase distance between boxplots
The answer involves using the position = position_dodge() argument of geom_boxplot().
For your example:
data <- data.frame(group1= sample(c("A","B","C"),100, replace = TRUE), group2=
sample(c("D","E"),100, replace = TRUE) ,response = rnorm(100, mean = 0, sd = 1))
ggplot(data = data, aes(y = response, x = group1, color = group2)) +
geom_boxplot(position = position_dodge(1))
Related
I'm trying to make a scaled histogram in a such a way, that transparency of each "column" (bin?) depends on the number of observations in a given range of x. Here is my code:
set.seed(1)
test = data.frame(x = rnorm(200, mean = 0, sd = 10),
y = as.factor(sample(c(0,1), replace=TRUE, size=100)))
threshold = 20
ggplot(test,
aes(x = x))+
geom_histogram(aes(fill = y, alpha = stat(count) > threshold),
position = "fill", bins = 10)
Basically I want to make plots that will looks like this:
however my code generate the plots there transparency are applied based on the count after grouping that ends up with hanging column like this:
For this example, in order to simulate a "proper" plot I just adjust the threshold, but I need alpha to consider sum of count from both groups in a given "column"(bin).
UPDATE:
I also want it to work with faceted plots in a such a way that highlighted area in each facet was independent from other facets. Approach that proposed #Stefan works perfect for the individual plot, but in faceted plot highlights the same area at all facets.
library(ggplot2)
set.seed(1)
test = data.frame(x = rnorm(1000, mean = 0, sd = 10),
y = as.factor(sample(c(0,1), replace=TRUE, size=1000)),
n = as.factor(sample(c(0,1,2), replace=TRUE, size=1000)),
m = as.factor(sample(c(0,1,3,4), replace=TRUE, size=1000)))
f = function(..count.., ..x..) tapply(..count.., factor(..x..), sum)[factor(..x..)]
threshold = 10
ggplot(test,
aes(x = x))+
geom_histogram(aes(fill = y, alpha = f(..count.., ..x..) > threshold),
position = "fill", bins = 10)+
facet_grid(rows = vars(n),
cols = vars(m))
This could be achieved like so:
As the count computed by stat_count is the number of obs after grouping we have to manually aggregate the count over groups to get the total count per bin.
To aggregate the counts per bin I use tapply, where I make use of the .. notation to get the variables computed by stat_count.
As the grouping variable I make use of the computed variable ..x.. which to the best of my knowledge is not documented. Basically ..x.. contains by default the midpoints of the bins and as such can be used as an identifier for the bins. However, as these are continuous values we have convert them to a factor.
Finally, to make the code more readable I use a auxilliary function to compute the aggregate counts. Additionally I double the threshold value to 20.
library(ggplot2)
set.seed(1)
test <- data.frame(
x = rnorm(200, mean = 0, sd = 10),
y = as.factor(sample(c(0, 1), replace = TRUE, size = 100))
)
threshold <- 20
f <- function(..count.., ..x..) tapply(..count.., factor(..x..), sum)[factor(..x..)]
p <- ggplot(
test,
aes(x = x)
) +
geom_histogram(aes(fill = y, alpha = f(..count.., ..x..) > threshold),
position = "fill", bins = 10
)
p
EDIT To allow for facetting we have to pass the function the ..PANEL.. identifier as an addtional argument. Instead of using tapply I now use dplyr::group_by and dplyr::add_count to compute the total count per bin and facet panel:
library(ggplot2)
library(dplyr)
set.seed(1)
test <- data.frame(
x = rnorm(200, mean = 0, sd = 10),
y = as.factor(sample(c(0, 1), replace = TRUE, size = 100)),
type = rep(c("A", "B"), each = 100)
)
threshold <- 20
f <- function(count, x, PANEL) {
data.frame(count, x, PANEL) %>%
add_count(x, PANEL, wt = count) %>%
pull(n)
}
p <- ggplot(
test,
aes(x = x)
) +
geom_histogram(aes(fill = y, alpha = f(..count.., ..x.., ..PANEL..) > threshold),
position = "fill", bins = 10
) +
facet_wrap(~type)
p
#> Warning: Using alpha for a discrete variable is not advised.
#> Warning: Removed 2 rows containing missing values (geom_bar).
I want to create a plot using facet_grid(), with free scales for the y axis. However, for each row, the scale breaks should be distributed evenly, that is, with 3 breaks.
I lended from this question, but I was not able to adapt the code in a way that the scale breaks are actually pretty.
However, this is my current approach:
# Packages
library(dplyr)
library(ggplot2)
library(scales)
# Test Data
set.seed(123)
result_df <- data.frame(
variable = rep(c(1,2,3,4), each = 4),
mode = rep(c(1,2), each = 2),
treat = rep(c(1,2)) %>% as.factor(),
mean = rnorm(16, mean = .7, sd = 0.2),
x = abs(rnorm(16, mean = 0, sd = 0.5))) %>%
mutate(lower = mean - x,upper = mean + x)
# Function for equal breaks, lended from
equal_breaks <- function(n = 3, s = 0.05, ...) {
function(x) {
d <- s * diff(range(x)) / (1+2*s)
round(seq(min(x)+d, max(x)-d, length=n), 2)
}}
## Plot
result_df %>%
ggplot(aes(y = mean*100, x = treat)) +
geom_pointrange(aes(ymin = lower*100, ymax = upper*100), shape = 20) +
facet_grid(variable ~ mode, scales = "free_y")+
scale_y_continuous(breaks = equal_breaks(n = 3, s = .2))+
labs(x = "", y = "")
Which leads to this current plot. As one can see, the breaks are far from being reasonable.
Thanks in advance for any kind of recommendation, and please excuse me in case I have missed a already existing solution.
Best, Malte
I have a plot like this:
Which was created with this code:
# Make data:
set.seed(42)
n <- 1000
df <- data.frame(values = sample(0:5, size = n, replace = T, prob = c(9/10, rep(0.0167,5))),
group = rep(1:100, each = 10),
fill2 = rep(rnorm(10), each = 100),
year = rep(2001:2010, times = 100)
)
df$values <- ifelse(df$year %in% 2001:2007 == T, 0, df$values)
# Plot
require(ggplot2)
p <- ggplot(data = df, aes(x = year, y = values, colour = as.factor(group))) + geom_line()
p
Since there are so many groups, the legend is really not helpfull.
Ideally I would like just two elements in the legend, one for group = 1 and for all the other groups (they should all have the same color). Is there a way to force this?
you can define a new variable that has only two values, but still plot lines according to their original group,
ggplot(data = df, aes(x = year, y = values, group = group,
colour = ifelse(group == 1, "1", "!1"))) +
geom_line() +
scale_colour_brewer("groups", palette="Set1")
I wonder if there is the possibility to change the fill main colour according to a categorical variable
Here is a reproducible example
df = data.frame(x = c(rnorm(10, mean = 0),
rnorm(10, mean = 3)),
y = c(rnorm(10, mean = 0),
rnorm(10, mean = 3)),
grp = c(rep('a', times = 10),
rep('b', times = 10)),
val = rep(1:10, times = 2))
ggplot(data = df,
aes(x = x,
y = y)) +
geom_point(pch = 21,
aes(color = grp,
fill = val,
size = val))
Of course it is easy to change the circle colour/shape, according to the variable grp, but I'd like to have the a group in shades of red and the b group in shades of blue.
I also thought about using facets, but don't know if the fill gradient can be changed for the two panels.
Anyone knows if that can be done, without gridExtra?
Thanks!
I think there are two ways to do this. The first is using the alpha aesthetic for your val column. This is a quick and easy way to accomplish your goal but may not be exactly what you want:
ggplot(data = df,
aes(x = x,
y = y)) +
geom_point(pch = 21,
aes(alpha=val,
fill = grp,
size = val)) + theme_minimal()
The second way would be to do something similar to this post: Vary the color gradient on a scatter plot created with ggplot2. I edited the code slightly so its not a range from white to your color of interest but from a lighter color to a darker color. This requires a little bit of work and using the scale_fill_identity function which basically takes a variable that has the colors you want and maps them directly to each point (so it doesn't do any scaling).
This code is:
#Rescale val to [0,1]
df$scaled_val <- rescale(df$val)
low_cols <- c("firebrick1","deepskyblue")
high_cols <- c("darkred","deepskyblue4")
df$col <- ddply(df, .(grp), function(x)
data.frame(col=apply(colorRamp(c(low_cols[as.numeric(x$grp)[1]], high_cols[as.numeric(x$grp)[1]]))(x$scaled_val),
1,function(x)rgb(x[1],x[2],x[3], max=255)))
)$col
df
ggplot(data = df,
aes(x = x,
y = y)) +
geom_point(pch = 21,
aes(
fill = col,
size = val)) + theme_minimal() +scale_fill_identity()
Thanks to this other post I found a way to visualize the fill bar in the legend, even though that wasn't what I meant to do.
Here's the ouptup
And the code
df = data.frame(x = c(rnorm(10, mean = 0),
rnorm(10, mean = 3)),
y = c(rnorm(10, mean = 0),
rnorm(10, mean = 3)),
grp = factor(c(rep('a', times = 10),
rep('b', times = 10)),
levels = c('a', 'b')),
val = rep(1:10, times = 2)) %>%
group_by(grp) %>%
mutate(scaledVal = rescale(val)) %>%
ungroup %>%
mutate(scaledValOffSet = scaledVal + 100*(as.integer(grp) - 1))
scalerange <- range(df$scaledVal)
gradientends <- scalerange + rep(c(0,100,200), each=2)
ggplot(data = df,
aes(x = x,
y = y)) +
geom_point(pch = 21,
aes(fill = scaledValOffSet,
size = val)) +
scale_fill_gradientn(colours = c('white',
'darkred',
'white',
'deepskyblue4'),
values = rescale(gradientends))
Basically one should rescale fill values (e.g. between 0 and 1) and separate them using another order of magnitude, provided by the categorical variable grp.
This is not what I wanted though: the snippet can be improved, of course, to make the whole thing less manual, but still lacks the simple usual discrete fill legend.
I'm trying to plot 2 sets of data points and a single line in R using ggplot.
The issue I'm having is with the legend.
As can be seen in the attached image, the legend applies the lines to all 3 data sets even though only one of them is plotted with a line.
I have melted the data into one long frame, but this still requires me to filter the data sets for each individual call to geom_line() and geom_path().
I want to graph the melted data, plotting a line based on one data set, and points on the remaining two, with a complete legend.
Here is the sample script I wrote to produce the plot:
xseq <- 1:100
x <- rnorm(n = 100, mean = 0.5, sd = 2)
x2 <- rnorm(n = 100, mean = 1, sd = 0.5)
x.lm <- lm(formula = x ~ xseq)
x.fit <- predict(x.lm, newdata = data.frame(xseq = 1:100), type = "response", se.fit = TRUE)
my_data <- data.frame(x = xseq, ypoints = x, ylines = x.fit$fit, ypoints2 = x2)
## Now try and plot it
melted_data <- melt(data = my_data, id.vars = "x")
p <- ggplot(data = melted_data, aes(x = x, y = value, color = variable, shape = variable, linetype = variable)) +
geom_point(data = filter(melted_data, variable == "ypoints")) +
geom_point(data = filter(melted_data, variable == "ypoints2")) +
geom_path(data = filter(melted_data, variable == "ylines"))
pushViewport(viewport(layout = grid.layout(1, 1))) # One on top of the other
print(p, vp = viewport(layout.pos.row = 1, layout.pos.col = 1))
You can set them manually like this:
We set linetype = "solid" for the first item and "blank" for others (no line).
Similarly for first item we set no shape (NA) and for others we will set whatever shape we need (I just put 7 and 8 there for an example). See e.g. http://www.r-bloggers.com/how-to-remember-point-shape-codes-in-r/ to help you to choose correct shapes for your needs.
If you are happy with dots then you can use my_shapes = c(NA,16,16) and scale_shape_manual(...) is not needed.
my_shapes = c(NA,7,8)
ggplot(data = melted_data, aes(x = x, y = value, color=variable, shape=variable )) +
geom_path(data = filter(melted_data, variable == "ylines") ) +
geom_point(data = filter(melted_data, variable %in% c("ypoints", "ypoints2"))) +
scale_colour_manual(values = c("red", "green", "blue"),
guide = guide_legend(override.aes = list(
linetype = c("solid", "blank","blank"),
shape = my_shapes))) +
scale_shape_manual(values = my_shapes)
But I am very curious if there is some more automated way. Hopefully someone can post better answer.
This post relied quite heavily on this answer: ggplot2: Different legend symbols for points and lines