Simulating data from multivariate distribution in R based on Winbugs/JAGS script - r

I am trying to simulate data, based on part of a JAGS/Winbugs script. The script comes from Eaves & Erkanli (2003, see, http://psych.colorado.edu/~carey/pdffiles/mcmc_eaves.pdf, page 295-296).
The (part of) the script I want to base my simulations on is as follows (different variable names than in the original paper):
for(fam in 1 : nmz ){
a2mz[fam, 1:N] ~ dmnorm(mu[1:N], tau.a[1:N, 1:N])
a1mz[fam, 1:N] ~ dmnorm(a2mz[fam, 1:N], tau.a[1:N, 1:N])
}
#Prior
tau.a[1:N, 1:N] ~ dwish(omega.g[,], N)
I want to simulate data in R for the parameters a2mz and a1mz as given in the script above.
So basically, I want to simualte data from -N- (e.g. = 3) multivariate distributions with -fam- (e.g. 10) persons with sigma tau.a.
To make this more illustrative: The purpose is to simulate genetic effects for -fam- (e.g. 10) families. The genetic effect is the same for each family (e.g. monozygotic twins), with a variance of tau.a (e.g. 0.5). Of these genetic effects, 3 'versions' (3 multivariate distributions) have to be simulated.
What I tried in R to simulate the data as given in the JAGS/Winbugs script is as follows:
library(MASS)
nmz = 10 #number of families, here e.g. 10
var_a = 0.5 #tau.g in the script
a2_mz <- mvrnorm(3, mu = rep(0, nmz), Sigma = diag(nmz)*var_a)
This simulates data for the a2mz parameter as referred to in the JAGS/Winbugs script above:
> print(t(a2_mz))
[,1] [,2] [,3]
[1,] -1.1563683 -0.4478091 -0.15037563
[2,] 0.5673873 -0.7052487 0.44377336
[3,] 0.2560446 0.9901964 -0.65463341
[4,] -0.8366952 0.4924839 -0.56891991
[5,] 0.7343780 0.5429955 0.87529201
[6,] 0.5592868 -0.3899988 -0.33709105
[7,] -1.8233663 -0.7149141 -0.18153049
[8,] -0.8213804 -1.4397075 -0.09159725
[9,] -0.7002797 -0.3996970 -0.29142215
[10,] 1.1084067 0.3884869 -0.46207940
However, when I then try to use these data to simulate data for the a1mz (third line of the JAGS/Winbugs) script, then something goes wrong and I am not sure what:
a1_mz <- mvrnorm(3, mu = t(a2_mz), Sigma = c(diag(nmz)*var_a, diag(nmz)*var_a, diag(nmz)*var_a))
This results in the error:
Error in eigen(Sigma, symmetric = TRUE, EISPACK = EISPACK) :
non-square matrix in 'eigen'
Can anyone give me any hints or tips on what I am doing wrong?
Many thanks,
Best regards,
inga

mvrnorm() takes a mean-vector and a variance matrix as input, and that's not what you're feeding it. I'm not sure I understand your question, but if you want to simulate 3 samples from 3 different multivariate normal distributions with same variance and different mean. Then just use:
a1_mz<-array(dim=c(dim(a2_mz),3))
for(i in 1:3) a1_mz[,,i]<-mvrnorm(3,t(a2_mz)[,i],diag(nmz)*var_a)

Related

PCA scores for only the first principal components are of "wrong" sign

I am currently trying to get into principal component analysis and regression. I therefore tried caclulating the principal components of a given matrix by hand and compare it with the results you get out of the r-package rcomp.
The following is the code for doing pca by hand
### compute principal component loadings and scores by hand
df <- matrix(nrow = 5, ncol = 3, c(90,90,60,60,30,
60,90,60,60,30,
90,30,60,90,60))
# calculate covariance matrix to see variance and covariance of
cov.mat <- cov.wt(df)
cen <- cov.mat$center
n.obs <- cov.mat$n.obs
cv <- cov.mat$cov * (1-1/n.obs)
## calcualate the eigenvector and values
edc <- eigen(cv, symmetric = TRUE)
ev <- edc$values
evec <- edc$vectors
cn <- paste0("Comp.", 1L:ncol(cv))
cen <- cov.mat$center
### get loadings (or principal component weights) out of the eigenvectors and compute scores
loadings <- structure(edc$vectors, class = "loadings")
df.scaled <- scale(df, center = cen, scale = FALSE)
scr <- df.scaled %*% evec
I compared my results to the ones obtained by using the princomp-package
pca.mod <- princomp(df)
loadings.mod <- pca.mod$loadings
scr.mod <- pca.mod$scores
scr
scr.mod
> scr
[,1] [,2] [,3]
[1,] -6.935190 32.310906 7.7400588
[2,] -48.968014 -19.339313 -0.3529382
[3,] 1.733797 -8.077726 -1.9350147
[4,] 13.339605 18.519500 -9.5437444
[5,] 40.829802 -23.413367 4.0916385
> scr.mod
Comp.1 Comp.2 Comp.3
[1,] 6.935190 32.310906 7.7400588
[2,] 48.968014 -19.339313 -0.3529382
[3,] -1.733797 -8.077726 -1.9350147
[4,] -13.339605 18.519500 -9.5437444
[5,] -40.829802 -23.413367 4.0916385
So apparently, I did quite good. The computed scores equal at least scale-wise. However: The scores for the first pricipal components differ in the sign. This is not the case for the other two.
This leads to two questions:
I have read that it is no problem multiplying the loadings and the scores of principal components by minus one. Does this hold, when only one of the principal components are of a different sign as well?
What am I doing "wrong" from a computational standpoint? The procedure seems straightforward to me and I dont see what I could change in my own calculations to get the same signs as the princomp-package.
When checking this with the mtcars data set, the signs for my first PC were right, however now the second and fourth PC scores are of different signs, compared to the package. I can not make any sense of this. Any help is appreciated!
The signs of eigenvectors and loadings are arbitrary, so there is nothing "wrong" here. The only thing that you should expect to be preserved is the overall pattern of signs within each loadings vector, i.e. in the example above the princomp answer for PC1 gives +,+,-,-,- while yours gives -,-,+,+,+. That's fine. If yours gave e.g. -,+,-,-,+ that would be trouble (because the two would no longer be equivalent up to multiplication by -1).
However, while it's generally true that the signs are arbitrary and hence could vary across algorithms, compilers, operating systems, etc., there's an easy solution in this particular case. princomp has a fix_sign argument:
fix_sign: Should the signs of the loadings and scores be chosen so that
the first element of each loading is non-negative?
Try princomp(df,fix_sign=FALSE)$scores and you'll see that the signs (probably!) line up with your results. (In general the fix_sign=TRUE option is useful because it breaks the symmetry in a specific way and thus will always result in the same answers across all platforms.)

Generate viable sampling distributions of discrete data in R

I'm trying to simulate 2 X 2 data that would yield a relatively strong negative phi coefficients.
I'm using the library GenOrd as follows:
library(GenOrd)
# Specify sample size N
N <- 40
# Marginal distribution
marginal <- list(c(.5), c(.5))
# Matrix
Sigma <- matrix(c(1.0, -.71, -.71, 1.0), 2, 2, byrow=TRUE)
# Generate a sample of the categorical variables with specified parameters
m <- ordsample(N, marginal, Sigma)
However, I'm getting the following error whenever I input a correlation larger than -.70.
Error in contord(list(marginal[[q]], marginal[[r]]), matrix(c(1, Sigma[q, :
Correlation matrix not valid!
I'm clearly specifying something untenable somewhere - but I don't know what it is.
Help appreciated.
I'll give a go at answering this as a coding question. The error points to where the packages spots the problem beginning: at your Sigma entry. Given your marginal distribution, having -.71 in your corr. matrix is out of bounds and the packages is warning you of this. You can see this by altering the signs in your Sigma:
Sigma <- matrix(c(1.0, .71, .71, 1.0), 2, 2, byrow=TRUE)
m <- ordsample(N, marginal, Sigma)
> m
[,1] [,2]
[1,] 1 1
[2,] 1 2
....
As to WHY -.71 is not valid, you may want to direct that statistical question to Cross Validated for a succinct answer.
I'm not exactly sure "why", however, I found no problems simulating 2 X 2 data that would yield a relatively strong negative correlation using the generate.binary() function from the MultiOrd package.
For example, the following code will work for the complete range of correlation inputs. The documentation for the generate.binary() function indicates that the matrix specified is interpreted as a tetrachoric correlation matrix.
library(MultiOrd)
# Specify sample size N
N <- 40
# Marginal distribution for two variables as a vector for MultiOrd rather than a list
marginal <- c(.5, .5)
# Correlation (tetrachoric) matrix as target for simulated relationship between variables
Sigma <- matrix(c(1.0, -.71, -.71, 1.0), 2, 2, byrow=TRUE)
# Generate a sample of the categorical variables with specified parameters
m <- generate.binary(40, marginal, Sigma)

kernel PCA with Kernlab and classification of Colon--cancer dataset

I need to Perform kernel PCA on the colon-­‐cancer dataset:
and then
I need to Plot number of principal components vs classification accuracy with PCA data.
For the first part i am using kernlab in R as follows (let number of features be 2 and then i will vary it from say 2-100)
kpc <- kpca(~.,data=data[,-1],kernel="rbfdot",kpar=list(sigma=0.2),features=2)
I am having tough time to understand how to use this PCA data for classification ( i can use any classifier for eg SVM)
EDIT : My Question is how to feed the output of PCA into a classifier
data looks like this (cleaned data)
uncleaned original data looks like this
I will show you a small example on how to use the kpca function of the kernlab package here:
I checked the colon-cancer file but it needs a bit of cleaning to be able to use it so I will use a random data set to show you how:
Assume the following data set:
y <- rep(c(-1,1), c(50,50))
x1 <- runif(100)
x2 <- runif(100)
x3 <- runif(100)
x4 <- runif(100)
x5 <- runif(100)
df <- data.frame(y,x1,x2,x3,x4,x5)
> df
y x1 x2 x3 x4 x5
1 -1 0.125841208 0.040543611 0.317198114 0.40923767 0.635434021
2 -1 0.113818719 0.308030825 0.708251147 0.69739496 0.839856000
3 -1 0.744765204 0.221210582 0.002220568 0.62921565 0.907277935
4 -1 0.649595597 0.866739474 0.609516644 0.40818013 0.395951297
5 -1 0.967379006 0.926688915 0.847379556 0.77867315 0.250867680
6 -1 0.895060293 0.813189446 0.329970821 0.01106764 0.123018797
7 -1 0.192447416 0.043720717 0.170960540 0.03058768 0.173198036
8 -1 0.085086619 0.645383728 0.706830885 0.51856286 0.134086770
9 -1 0.561070374 0.134457795 0.181368729 0.04557505 0.938145228
In order to run the pca you need to do:
kpc <- kpca(~.,data=data[,-1],kernel="rbfdot",kpar=list(sigma=0.2),features=4)
which is the same way as you use it. However, I need to point out that the features argument is the number of principal components and not the number of classes in your y variable. Maybe you knew this already but having 2000 variables and producing only 2 principal components might not be what you are looking for. You need to choose this number carefully by checking the eigen values. In your case I would probably pick 100 principal components and chose the first n number of principal components according to the highest eigen values. Let's see this in my random example after running the previous code:
In order to see the eigen values:
> kpc#eig
Comp.1 Comp.2 Comp.3 Comp.4
0.03756975 0.02706410 0.02609828 0.02284068
In my case all of the components have extremely low eigen values because my data is random. In your case I assume you will get better ones. You need to choose the n number of components that have the highest values. A value of zero shows that the component does not explain any of the variance. (Just for the sake of the demonstration I will use all of them in the svm below).
In order to access the principal components i.e. the PCA output you do this:
> kpc#pcv
[,1] [,2] [,3] [,4]
[1,] -0.1220123051 1.01290883 -0.935265092 0.37279158
[2,] 0.0420830469 0.77483019 -0.009222970 1.14304032
[3,] -0.7060568260 0.31153129 -0.555538694 -0.71496666
[4,] 0.3583160509 -0.82113573 0.237544936 -0.15526000
[5,] 0.1158956953 -0.92673486 1.352983423 -0.27695507
[6,] 0.2109994978 -1.21905573 -0.453469345 -0.94749503
[7,] 0.0833758766 0.63951377 -1.348618472 -0.26070127
[8,] 0.8197838629 0.34794455 0.215414610 0.32763442
[9,] -0.5611750477 -0.03961808 -1.490553198 0.14986663
...
...
This returns a matrix of 4 columns i.e. the number of the features argument which is the PCA output i.e. the principal components. kerlab uses the S4 Method Dispatch System and that is why you use # at kpc#pcv.
You then need to use the above matrix to feed in an svm in the following way:
svmmatrix <- kpc#pcv
library(e1071)
svm(svmmatrix, as.factor(y))
Call:
svm.default(x = svmmatrix, y = as.factor(y))
Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 1
gamma: 0.25
Number of Support Vectors: 95
And that's it! A very good explanation I found on the internet about pca can be found here in case you or anyone else reading this wants to find out more.

bootstrapping from a matrix

I have spent over a week looking at different forums in order to figure this out and unfortunately remain stuck. I'm new to boostrapping and have found it difficult to get it to work using R for my data set.
I have a matrix of data, that I would like to simply draw 1000 samples from and the matrix by parametric bootstrapping. And then calculate the mean from these sampled values. I have tried the below code and get no results.
Any help would be appreciated.
A1 A2 A3 A4 D1 D2 E1
[1,] 0.900111 -0.314068 0.203188 -0.548964 -0.107771 -0.072454 0.084097
[2,] -0.314068 0.195798 -0.138751 0.198521 0.066360 0.048523 -0.126348
[3,] 0.203188 -0.138751 0.400325 -0.128715 -0.180103 -0.037768 0.128198
[4,] -0.548964 0.198521 -0.128715 1.190415 0.067779 0.047209 -0.053145
[5,] -0.107771 0.066360 -0.180103 0.067779 0.149419 0.039649 -0.102587
[6,] -0.072454 0.048523 -0.037768 0.047209 0.039649 0.396405 0.016789
[7,] 0.084097 -0.126348 0.128198 -0.053145 -0.102587 0.016789 0.790767
#creating the data matrix
data <- read.csv("Matrix.csv", header=F)
data1 <- as.matrix(data)
#Bootstrap 1000 samples
psi<- function (data,i) mean (data[i])
byboot = boot(data, psi, R=1000)
myboot
If you're trying to sample from a correlated normal distribution you can use MASS::mvrnorm
library(MASS)
x <- mvrnorm(1000, rep(0,7), data)
colMeans(x)
cov(x) # check the covariance matrix is approximately recovered

Using R to honor correlations for LatinHypercube / Monte Carlo trials

I am currently using python and RPY to use the functionality inside R.
How do I use R library to generate Monte carlo samples that honor the correlation between 2 variables..
e.g
if variable A and B have a correlation of 85% (0.85), i need to generate all the monte carlo samples honoring that correlation between A & B.
Would appreciate if anyone can share ideas / snippets
Thanks
The rank correlation method of Iman and Conover seems to be a widely used and general approach to producing correlated monte carlo samples for computer based experiments, sensitivity analysis etc. Unfortunately I have only just come across this and don't have access to the PDF so don't know how the authors actually implement their method, but you could follow this up.
Their method is more general because each variable can come from a different distribution unlike the multivariate normal of #Dirk's answer.
Update: I found an R implementation of the above approach in package mc2d, in particular you want the cornode() function.
Here is an example taken from ?cornode
> require(mc2d)
> x1 <- rnorm(1000)
> x2 <- rnorm(1000)
> x3 <- rnorm(1000)
> mat <- cbind(x1, x2, x3)
> ## Target
> (corr <- matrix(c(1, 0.5, 0.2, 0.5, 1, 0.2, 0.2, 0.2, 1), ncol=3))
[,1] [,2] [,3]
[1,] 1.0 0.5 0.2
[2,] 0.5 1.0 0.2
[3,] 0.2 0.2 1.0
> ## Before
> cor(mat, method="spearman")
x1 x2 x3
x1 1.00000000 0.01218894 -0.02203357
x2 0.01218894 1.00000000 0.02298695
x3 -0.02203357 0.02298695 1.00000000
> matc <- cornode(mat, target=corr, result=TRUE)
Spearman Rank Correlation Post Function
x1 x2 x3
x1 1.0000000 0.4515535 0.1739153
x2 0.4515535 1.0000000 0.1646381
x3 0.1739153 0.1646381 1.0000000
The rank correlations in matc are now very close to the target correlations of corr.
The idea with this is that you draw the samples separately from the distribution for each variable, and then use the Iman & Connover approach to make the samples (as close) to the target correlations as possible.
That is a FAQ. Here is one answer using a recommended package:
R> library(MASS)
R> example(mvrnorm)
mvrnrmR> Sigma <- matrix(c(10,3,3,2),2,2)
mvrnrmR> Sigma
[,1] [,2]
[1,] 10 3
[2,] 3 2
mvrnrmR> var(mvrnorm(n=1000, rep(0, 2), Sigma))
[,1] [,2]
[1,] 8.82287 2.63987
[2,] 2.63987 1.93637
mvrnrmR> var(mvrnorm(n=1000, rep(0, 2), Sigma, empirical = TRUE))
[,1] [,2]
[1,] 10 3
[2,] 3 2
R>
Switching between correlation and covariance is straightforward (hint: outer product of vector of standard deviations).
This question was not tagged as python, but based on your comment it looks like you might be looking for a Python solution as well. The most basic Python implementation of Iman Convover, that I can concoct looks like the following in Python (actually numpy):
def makeCorrelated( y, corMatrix ):
c = multivariate_normal(zeros(size( y, 0 ) ) , corMatrix, size( y, 1 ) )
key = argsort( argsort(c, axis=0), axis=0 ).T
out = map(take, map(sort, y), key)
out = array(out)
return out
where y is an array of samples from the marginal distributions and corMatrix is a positive semi definite, symmetric correlation matrix. Given that this function uses multivariate_normal() for the c matrix, you can tell this uses an implied Gaussian Copula. To use different copula structures you'll need to use different drivers for the c matrix.

Resources