I would like define an operator in which the input and output are each functions. For example, say I have
op1[f_,x_,y_,z_]:= f[y,x,z]
op2[f_,x_,y_,z_]:=f[x,z,y]
I would like to compose op1 and op2 to obtain the operator which sends f(x,y,z) to f(z,x,y), for example. However, expressions such as op1[op2[f,x,y,z],x,y,z] are not properly interpreted by Mathematica.
At the moment the only fix is
g[x_,y_,z_]:=op2[f,x,y,z];
result[x_,y_,z_]:=op1[g,x,y,z]
Vague question: how do I make this less clumsy?
Less vague: Is there the notion partial evaluation in Mathematica, so that something like A[f,-,-,-] is properly interpreted as a function of 3 variables?
First, the way you write op1 and op2, they do not operate on f, and do not create a function, just an expression with that function. That's ok but it explains why you do not obtain what you want.
As a middle ground you can do this:
In[1]:= myop1[f_][x_, y_, z_] := f[y, x, z];
In[2]:= myop2[f_][x_, y_, z_] := f[x, z, y];
In[3]:= myop2[myop1[g]][a, b, c]
Out[3]= g[c, a, b]
This is quite close to what you want.
I think you can use Composition for that: http://reference.wolfram.com/language/ref/Composition.html
Composition[op1,op2][x,y,z]
In general refer to http://reference.wolfram.com/language/guide/FunctionalProgramming.html for functional programming related features.
Related
I'm trying to code a new operator, a double tilde ~~, to denote a different kind of formula to be passed onto another function (e.g., mirroring the functionality of ~~ in the lavaan package lavaan syntax).
The issue is y ~~ x returns y ~ ~x, where the second ~ is returned with the predictors.
I am at a total loss here. It seems ~ is a primitive function .Primitive("~") with no methods, unlike, say, +. So existing tutorials for S3 methods are useless.
Is this a dead end and am I doing something really against the programming language? Or is there an easy solution I am missing?
I guess, if you accept the comment, I can make an answer out of it:
~ is an operator in R like +,-, /,*. Although it is possible to use many kinds of characters for your variables using ticks `xxx` and qoute "xxx" you also need to access them with ticks (see ?Reserved). (I'm gonna use quotes instead of ticks here, but consider using ticks for a more accepted style guide.)
R is a functional programming language and therefore you can access every single language statement as a function, e.g. a + b is the same as "+"(a, b). When you write a + b it is just syntactic sugar - language-wise it is translated into a primitive function call with two arguments.
To complicate things, there is an order of evaluation. So if you write a~~b it gets translated into "~"(a, ~b). It is because ~ is a primitive operator desiged as a sigle character. You still can define the function "~~" <- function(a,b) {a + b}, but you can only call it by "~~"(a,b) directly for it to work.
On the other hand, you need to be able to specify how a binary operator looks like. Having defined a function "asdf" <- function(a,b) {a + b} is not enough and this will not work: a asdf b
R has something to define binary operators (R: What are operators like %in% called and how can I learn about them?), see large portion of binary operators used like in magrittr's %>% or doParallel's %dopar%. Thus it is better to stick to the binary operator syntax using %, i.e. <tick>%~~%<tick> <- function(a,b) {a+b}. Then you can easily access it by using syntactic sugar a %~~% b.
Strange stuff, I agree. As for magic tricks: try this at home "for"(a, 1:10, {print(a)}). Bonus question: why is a visible in the parent frame ?
Suppose I wish to define a recursive function theta whose functionality should be apparent below.
The following definition will work.
theta[0] = 0;
theta[i_ ] := theta[i-1] + 1
However, this will not work.
theta[0] = 0;
theta[i_ + 1] := theta[i] + 1
My question is, is it possible to make something like the second definition work, where I can define the function based on the i+1 term instead of the i term?
I understand that they are mathematically equivalent, but I am curious about whether Mathematica will permit something like the second syntax.
It is perfectly feasible to make your second definition work if you understand that default automatic simplifications are done, often before you can get control, and if you then use your definition with appropriate parameters that match your definition.
Example
In[1]:= theta[i_ + 1] := Sin[i]+1;
theta[a + 1]
Out[2]= 1+Sin[a]
but then you probably expect to use this as
In[3]:= theta[8]
Out[3]= theta[8]
and that fails because you defined a function that matches the sum of something and one, but gave it just an integer and you have no definition that matches that. Even this fails
In[4]:= theta[7 + 1]
Out[4]= theta[8]
because the default automatic rules turn the sum of two integers into an integer and you are back to the previous case.
It is sometimes said that Mathematica does "structural" matching, if two structure of two expressions match the Mathematica accepts this as a match. This is very different from the sort of matching that anyone with a bit of mathematical maturity would use. A decade or more ago someone wrote up an article in the Mathematica Journal showing that it would be possible to use a more mathematical version of matching within Mathematica. I think that was completely ignored and nothing more was ever done with that. It would be nice if someone with the skill needed could bring that code up to the current version of Mathematica, but I think this might be a substantial challenge.
There is always "a way". For example:
ClearAll[a];
a[i_] = a[i] /. First#RSolve[{a[i + 1] == a[i] + 1, a[0] == 0}, a[i], i]
As far as I can tell the only difference is speed and you have to be a bit tricker in how you define lambda functions.
For instance:
map(lambda x: x + 1, range(4)) == [(lambda x: x + 1)(y) for y in range(4)]
It seems to me like the second way is more pythonic, but I am not sure why.
EDIT:
Yes I understand that the lambda would be excluded in the second example, I was just trying to show as equivalent code as possible.
The right way to do this would be
[y + 1 for y in range(4)]
No need to construct a lambda function here. Your code would unnecessarily build a new function object in every single iteration of the list comprehension.
That said, you can write any call to map() as an equivalent list comprehension. If the first argument to map() is a lambda function, the list comprehension is usually preferred. If the first argument to map() is a function name, both variants are fine. Some people (including me) prefer, say,
map(str, my_list)
while others prefer
[str(x) for x in my_list]
There is no difference, but the pythonic way would be to omit the lambda completely:
[y + 1 for y in range(4)]
Note also that if your mapping function is a "built-in" (written in C) function, rather than a python function or a lambda, map will be faster.
Another pythonic, but uncommon, way (avoids unnecessary lambda) would be:
map(1 .__add__, range(4)) # thanks to SvenMarnach for this
It is usually preferable to avoid lambdas in mapping forms, because a list comprehension will always be more efficient, AND clearer. By contrast, using multi-line functions is perfectly acceptable - there is no way to write them inline, and even if you could, it would likely be less clear.
Another difference is that because map can take multiple sequences to map against, and passes them as positional parameters to the mapping function, one can avoid the zipping that would be required in a list comprehension:
[x+y for x,y in zip(range(4), range(2,6))]
#vs
from operator import add
map(add, range(4), range(2,6))
I'm interested in building a derivative calculator. I've racked my brains over solving the problem, but I haven't found a right solution at all. May you have a hint how to start? Thanks
I'm sorry! I clearly want to make symbolic differentiation.
Let's say you have the function f(x) = x^3 + 2x^2 + x
I want to display the derivative, in this case f'(x) = 3x^2 + 4x + 1
I'd like to implement it in objective-c for the iPhone.
I assume that you're trying to find the exact derivative of a function. (Symbolic differentiation)
You need to parse the mathematical expression and store the individual operations in the function in a tree structure.
For example, x + sinĀ²(x) would be stored as a + operation, applied to the expression x and a ^ (exponentiation) operation of sin(x) and 2.
You can then recursively differentiate the tree by applying the rules of differentiation to each node. For example, a + node would become the u' + v', and a * node would become uv' + vu'.
you need to remember your calculus. basically you need two things: table of derivatives of basic functions and rules of how to derivate compound expressions (like d(f + g)/dx = df/dx + dg/dx). Then take expressions parser and recursively go other the tree. (http://www.sosmath.com/tables/derivative/derivative.html)
Parse your string into an S-expression (even though this is usually taken in Lisp context, you can do an equivalent thing in pretty much any language), easiest with lex/yacc or equivalent, then write a recursive "derive" function. In OCaml-ish dialect, something like this:
let rec derive var = function
| Const(_) -> Const(0)
| Var(x) -> if x = var then Const(1) else Deriv(Var(x), Var(var))
| Add(x, y) -> Add(derive var x, derive var y)
| Mul(a, b) -> Add(Mul(a, derive var b), Mul(derive var a, b))
...
(If you don't know OCaml syntax - derive is two-parameter recursive function, with first parameter the variable name, and the second being mathched in successive lines; for example, if this parameter is a structure of form Add(x, y), return the structure Add built from two fields, with values of derived x and derived y; and similarly for other cases of what derive might receive as a parameter; _ in the first pattern means "match anything")
After this you might have some clean-up function to tidy up the resultant expression (reducing fractions etc.) but this gets complicated, and is not necessary for derivation itself (i.e. what you get without it is still a correct answer).
When your transformation of the s-exp is done, reconvert the resultant s-exp into string form, again with a recursive function
SLaks already described the procedure for symbolic differentiation. I'd just like to add a few things:
Symbolic math is mostly parsing and tree transformations. ANTLR is a great tool for both. I'd suggest starting with this great book Language implementation patterns
There are open-source programs that do what you want (e.g. Maxima). Dissecting such a program might be interesting, too (but it's probably easier to understand what's going on if you tried to write it yourself, first)
Probably, you also want some kind of simplification for the output. For example, just applying the basic derivative rules to the expression 2 * x would yield 2 + 0*x. This can also be done by tree processing (e.g. by transforming 0 * [...] to 0 and [...] + 0 to [...] and so on)
For what kinds of operations are you wanting to compute a derivative? If you allow trigonometric functions like sine, cosine and tangent, these are probably best stored in a table while others like polynomials may be much easier to do. Are you allowing for functions to have multiple inputs,e.g. f(x,y) rather than just f(x)?
Polynomials in a single variable would be my suggestion and then consider adding in trigonometric, logarithmic, exponential and other advanced functions to compute derivatives which may be harder to do.
Symbolic differentiation over common functions (+, -, *, /, ^, sin, cos, etc.) ignoring regions where the function or its derivative is undefined is easy. What's difficult, perhaps counterintuitively, is simplifying the result afterward.
To do the differentiation, store the operations in a tree (or even just in Polish notation) and make a table of the derivative of each of the elementary operations. Then repeatedly apply the chain rule and the elementary derivatives, together with setting the derivative of a constant to 0. This is fast and easy to implement.
I'm writing program in Python and I need to find the derivative of a function (a function expressed as string).
For example: x^2+3*x
Its derivative is: 2*x+3
Are there any scripts available, or is there something helpful you can tell me?
If you are limited to polynomials (which appears to be the case), there would basically be three steps:
Parse the input string into a list of coefficients to x^n
Take that list of coefficients and convert them into a new list of coefficients according to the rules for deriving a polynomial.
Take the list of coefficients for the derivative and create a nice string describing the derivative polynomial function.
If you need to handle polynomials like a*x^15125 + x^2 + c, using a dict for the list of coefficients may make sense, but require a little more attention when doing the iterations through this list.
sympy does it well.
You may find what you are looking for in the answers already provided. I, however, would like to give a short explanation on how to compute symbolic derivatives.
The business is based on operator overloading and the chain rule of derivatives. For instance, the derivative of v^n is n*v^(n-1)dv/dx, right? So, if you have v=3*x and n=3, what would the derivative be? The answer: if f(x)=(3*x)^3, then the derivative is:
f'(x)=3*(3*x)^2*(d/dx(3*x))=3*(3*x)^2*(3)=3^4*x^2
The chain rule allows you to "chain" the operation: each individual derivative is simple, and you just "chain" the complexity. Another example, the derivative of u*v is v*du/dx+u*dv/dx, right? If you get a complicated function, you just chain it, say:
d/dx(x^3*sin(x))
u=x^3; v=sin(x)
du/dx=3*x^2; dv/dx=cos(x)
d/dx=v*du+u*dv
As you can see, differentiation is only a chain of simple operations.
Now, operator overloading.
If you can write a parser (try Pyparsing) then you can request it to evaluate both the function and derivative! I've done this (using Flex/Bison) just for fun, and it is quite powerful. For you to get the idea, the derivative is computed recursively by overloading the corresponding operator, and recursively applying the chain rule, so the evaluation of "*" would correspond to u*v for function value and u*der(v)+v*der(u) for derivative value (try it in C++, it is also fun).
So there you go, I know you don't mean to write your own parser - by all means use existing code (visit www.autodiff.org for automatic differentiation of Fortran and C/C++ code). But it is always interesting to know how this stuff works.
Cheers,
Juan
Better late than never?
I've always done symbolic differentiation in whatever language by working with a parse tree.
But I also recently became aware of another method using complex numbers.
The parse tree approach consists of translating the following tiny Lisp code into whatever language you like:
(defun diff (s x)(cond
((eq s x) 1)
((atom s) 0)
((or (eq (car s) '+)(eq (car s) '-))(list (car s)
(diff (cadr s) x)
(diff (caddr s) x)
))
; ... and so on for multiplication, division, and basic functions
))
and following it with an appropriate simplifier, so you get rid of additions of 0, multiplying by 1, etc.
But the complex method, while completely numeric, has a certain magical quality. Instead of programming your computation F in double precision, do it in double precision complex.
Then, if you need the derivative of the computation with respect to variable X, set the imaginary part of X to a very small number h, like 1e-100.
Then do the calculation and get the result R.
Now real(R) is the result you would normally get, and imag(R)/h = dF/dX
to very high accuracy!
How does it work? Take the case of multiplying complex numbers:
(a+bi)(c+di) = ac + i(ad+bc) - bd
Now suppose the imaginary parts are all zero, except we want the derivative with respect to a.
We set b to a very small number h. Now what do we get?
(a+hi)(c) = ac + hci
So the real part of this is ac, as you would expect, and the imaginary part, divided by h, is c, which is the derivative of ac with respect to a.
The same sort of reasoning seems to apply to all the differentiation rules.
Symbolic Differentiation is an impressive introduction to the subject-at least for non-specialist like me :) The code is written in C++ btw.
Look up automatic differentiation. There are tools for Python. Also, this.
If you are thinking of writing the differentiation program from scratch, without utilizing other libraries as help, then the algorithm/approach of computing the derivative of any algebraic equation I described in my blog will be helpful.
You can try creating a class that will represent a limit rigorously and then evaluate it for (f(x)-f(a))/(x-a) as x approaches a. That should give a pretty accurate value of the limit.
if you're using string as an input, you can separate individual terms using + or - char as a delimiter, which will give you individual terms. Now you can use power rule to solve for each term, say you have x^3 which using power rule will give you 3x^2, or suppose you have a more complicated term like a/(x^3) or a(x^-3), again you can single out other variables as a constant and now solving for x^-3 will give you -3a/(x^2). power rule alone should be enough, however it will require extensive use of the factorization.
Unless any already made library deriving it's quite complex because you need to parse and handle functions and expressions.
Deriving by itself it's an easy task, since it's mechanical and can be done algorithmically but you need a basic structure to store a function.